
cbapi Documentation
Release 1.3.6

Carbon Black Developer Network

Jun 21, 2018

Contents

1 Major Features 3

2 API Credentials 5

3 Backwards & Forwards Compatibility 7

4 User Guide 9
4.1 Installation . 9
4.2 Getting Started . 11
4.3 Concepts . 11
4.4 Logging & Diagnostics . 16
4.5 Cb Response API Examples . 17
4.6 CbAPI and Live Response . 25
4.7 CbAPI Changelog . 27

5 API Documentation 35
5.1 Cb Response API . 35
5.2 Cb Protection API . 52
5.3 Cb Defense API . 67
5.4 Exceptions . 71

6 Indices and tables 73

Python Module Index 75

i

ii

cbapi Documentation, Release 1.3.6

Release v1.3.6.

cbapi provides a straightforward interface to the Carbon Black products: Cb Protection, Response, and Defense. This
library provides a Pythonic layer to access the raw power of the REST APIs of all Cb products, making it trivial to do
the easy stuff and handling all of the “sharp corners” behind the scenes for you. Take a look:

>>> from cbapi.response import CbResponseAPI, Process, Binary, Sensor
>>> #
>>> # Create our CbAPI object
>>> #
>>> c = CbResponseAPI()
>>> #
>>> # take the first process that ran notepad.exe, download the binary and read the
→˓first two bytes
>>> #
>>> c.select(Process).where('process_name:notepad.exe').first().binary.file.read(2)
'MZ'
>>> #
>>> # if you want a specific ID, you can put it straight into the .select() call:
>>> #
>>> binary = c.select(Binary, "24DA05ADE2A978E199875DA0D859E7EB")
>>> #
>>> # select all sensors that have ran notepad
>>> #
>>> sensors = set()
>>> for proc in c.select(Process).where('process_name:evil.exe'):
... sensors.add(proc.sensor)
>>> #
>>> # iterate over all sensors and isolate
>>> #
>>> for s in sensors:
... s.network_isolation_enabled = True
... s.save()

If you’re more a Cb Protection fellow, then you’re in luck as well:

>>> from cbapi.protection.models import FileInstance
>>> from cbapi.protection import CbProtectionAPI
>>> #
>>> # Create our Cb Protection API object
>>> #
>>> p = CbProtectionAPI()
>>> #
>>> # Select the first file instance
>>> #
>>> fi = p.select(FileInstance).first()
>>> #
>>> # print that computer's hostname. This automatically "joins" with the Computer
→˓API object.
>>> #
>>> fi.computer.name
u'DOMAIN\\MYHOSTNAME'
>>> #
>>> # change the policy ID
>>> #
>>> fi.computer.policyId = 3
>>> fi.computer.save()

As of version 1.2, cbapi now provides support for Cb Defense too!

Contents 1

cbapi Documentation, Release 1.3.6

>>> from cbapi.defense.models import Device
>>> from cbapi.defense import CbDefenseAPI
>>> #
>>> # Create our Cb Defense API object
>>> #
>>> p = CbDefenseAPI()
>>> #
>>> # Select any devices that have the hostname WIN-IA9NQ1GN8OI and an internal IP
→˓address of 192.168.215.150
>>> #
>>> devices = c.select(Device).where('hostNameExact:WIN-IA9NQ1GN8OI').and_(
→˓"ipAddress:192.168.215.150").first()
>>> #
>>> # Change those devices' policy into the Windows_Restrictive_Workstation policy.
>>> #
>>> for dev in devices:
>>> dev.policyName = "Restrictive_Windows_Workstation"
>>> dev.save()

2 Contents

CHAPTER 1

Major Features

• Enhanced Live Response API The new cbapi now provides a robust interface to the Cb Response Live Re-
sponse capability. Easily create Live Response sessions, initiate commands on remote hosts, and pull down
data as necessary to make your Incident Response process much more efficient and automated.

• Consistent API for Cb Response, Protection and Defense platforms We now support Cb Response, Protec-
tion and Defense users in the same API layer. Even better, the object model is the same for both; if you
know one API you can easily transition to the other. cbapi hides all the differences between the three REST
APIs behind a single, consistent Python-like interface.

• Enhanced Performance cbapi now provides a built in caching layer to reduce the query load on the Carbon
Black server. This is especially useful when taking advantage of cbapi’s new “joining” features. You can
transparently access, for example, the binary associated with a given process in Cb Response. Since many
processes may be associated with the same binary, it does not make sense to repeatedly request the same
binary information from the server over and over again. Therefore cbapi now caches this information to
avoid unnecessary requests.

• Reduce Complexity cbapi now provides a friendly - dare I say “fun” - interface to the data. This greatly
improves developer productivity and lowers the bar to entry.

• Python 3 and Python 2 compatible Use all the new features and modules available in Python 3 with cbapi.
This module is compatible with Python versions 2.6.6 and above, 2.7.x, 3.4.x, and 3.5.x.

• Better support for multiple Cb servers cbapi now introduces the concept of Credential Profiles; named col-
lections of URL, API keys, and optional proxy configuration for connecting to any number of Cb Protec-
tion, Defense, or Response servers.

3

cbapi Documentation, Release 1.3.6

4 Chapter 1. Major Features

CHAPTER 2

API Credentials

The new cbapi as of version 0.9.0 enforces the use of credential files.

In order to perform any queries via the API, you will need to get the API token for your Cb user. See the documentation
on the Developer Network website on how to acquire the API token for Cb Response, Cb Protection, or Cb Defense.

Once you acquire your API token, place it in one of the default credentials file locations:

• /etc/carbonblack/credentials.response (credentials.protection for Cb Protection, or
credentials.defense for Cb Defense)

• ~/.carbonblack/credentials.response

• (current working directory) .carbonblack/credentials.response

Credentials found in a later path will overwrite earlier ones.

The credentials are stored in INI format. The name of each credential profile is enclosed in square brackets, followed
by key-value pairs providing the necessary credential information:

[default]
url=https://localhost
token=abcdef0123456789abcdef
ssl_verify=False

[prod]
url=https://cbserver.prod.corp.com
token=aaaaaa
ssl_verify=True

[otheruser]
url=https://localhost
token=bbbbbb
ssl_verify=False

The possible options for each credential profile are:

• url: The base URL of the Cb server. This should include the protocol (https) and the hostname, and nothing
else.

5

http://developer.carbonblack.com/reference/enterprise-response/authentication/
http://developer.carbonblack.com/reference/enterprise-protection/authentication/
http://developer.carbonblack.com/reference/cb-defense/authentication/

cbapi Documentation, Release 1.3.6

• token: The API token for the user ID. More than one credential profile can be specified for a given server, with
different tokens for each.

• ssl_verify: True or False; controls whether the SSL/TLS certificate presented by the server is validated against
the local trusted CA store.

• proxy: A proxy specification that will be used when connecting to the Cb server. The format is:
http://myusername:mypassword@proxy.company.com:8001/ where the hostname of the proxy
is proxy.company.com, port 8001, and using username/password myusername and mypassword re-
spectively.

• ignore_system_proxy: If you have a system-wide proxy specified, setting this to True will force cbapi to bypass
the proxy and directly connect to the Cb server.

Future versions of cbapi will also provide the ability to “pin” the TLS certificate so as to provide certificate verification
on self-signed or internal CA signed certificates.

6 Chapter 2. API Credentials

CHAPTER 3

Backwards & Forwards Compatibility

The previous versions (0.8.x and earlier) of cbapi and bit9Api are now deprecated and will no longer receive updates.
However, existing scripts will work without change as cbapi includes both in its legacy package. The legacy package
is imported by default and placed in the top level cbapi namespace when the cbapi module is imported on a Python 2.x
interpreter. Therefore, scripts that expect to import cbapi.CbApi will continue to work exactly as they had previously.

Since the old API was not compatible with Python 3, the legacy package is not importable in Python 3.x and therefore
legacy scripts cannot run under Python 3.

Once cbapi 1.0.0 is released, the old cbapi.legacy.CbApi will be deprecated and removed entirely no ear-
lier than January 2017. New scripts should use the cbapi.response.rest_api.CbResponseAPI (for Cb
Response), cbapi.protection.rest_api.CbProtectionAPI (for Cb Protection), or cbapi.defense.
rest_api.CbDefenseAPI API entry points.

The API is frozen as of version 1.0; afterward, any changes in the 1.x version branch will be additions/bug fixes only.
Breaking changes to the API will increment the major version number (2.x).

7

cbapi Documentation, Release 1.3.6

8 Chapter 3. Backwards & Forwards Compatibility

CHAPTER 4

User Guide

Let’s get started with cbapi. Once you’ve mastered the concepts here, then you can always hop over to the API
Documentation (below) for detailed information on the objects and methods exposed by cbapi.

4.1 Installation

Before installing cbapi, make sure that you have access to a working Cb Response or Cb Protection server. The server
can be either on-premise or in the cloud. Cb Response clusters are also supported. Once you have access to a working
can use the standard Python packaging tools to install cbapi on your local machine.

Feel free to follow along with this document or watch the Development Environment Setup video on the Developer
Network website.

If you already have Python installed, you can skip right down to “Using Pip”.

4.1.1 Installing Python

Obviously the first thing you’ll need to do is install Python on your workstation or server. We recommend using the
latest version of Python 3 (as of this writing, 3.6.4) for maximum performance and compatibility. Linux and Mac OS
X systems will most likely have Python installed; it will have to be installed on Windows separately.

Note that cbapi is compatible with both Python 2.7 and Python 3.x. If you already have Python 3 installed on your
system, you’re good to go!

If you believe you have Python installed already, run the following two commands at a command prompt:

$ python --version
Python 3.6.4

$ pip --version
pip 9.0.1 from /usr/local/lib/python3.6/site-packages (python 3.6)

9

https://developer.carbonblack.com/guide/enterprise-response/development-environment-video/

cbapi Documentation, Release 1.3.6

If “python” reports back a version of 2.6.x, 2.7.x, or 3.x.x, you’re in luck. If “pip” is not found, don’t worry, we’ll
install that shortly.

If you’re on Windows, and Python is not installed yet, download the latest Python installer from the python.org website.
We recommend using the latest version of Python 3. As of this writing, the latest version available is 3.6.4. The direct
link for the Python 3.6.4 installer for Windows 64-bit platforms is https://www.python.org/ftp/python/3.6.4/python-3.
6.4-amd64.exe.

Ensure that the “Add Python to PATH” option is checked.

If for some reason you do not have pip installed, follow the instructions at this handy guide.

4.1.2 Using Pip

Once Python and Pip are installed, then open a command prompt and type:

$ pip install cbapi

This will download and install the latest version of cbapi from the Python PyPI packaging server.

4.1.3 Getting the Source Code

cbapi is actively developed on GitHub and the code is available from the carbonblack GitHub repository. The version
of cbapi on GitHub will reflect the latest development version of cbapi and may contain bugs not present in the
currently released version. On the other hand, it may contain exactly the goodies you’re looking for (or you’d like to
contribute back; we are happy to accept pull requests!)

To clone the latest version of the cbapi repository from GitHub:

$ git clone https://github.com/carbonblack/cbapi-python.git

Once you have a copy of the source, you can install it in “development” mode into your Python site-packages:

$ cd cbapi-python
$ python setup.py develop

This will link the version of cbapi-python you checked out into your Python site-packages directory. Any changes you
make to the checked out version of cbapi will be reflected in your local Python installation. This is a good choice if
you are thinking of changing or developing on cbapi itself.

10 Chapter 4. User Guide

https://www.python.org/ftp/python/3.6.4/python-3.6.4-amd64.exe
https://www.python.org/ftp/python/3.6.4/python-3.6.4-amd64.exe
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/carbonblack/cbapi-python

cbapi Documentation, Release 1.3.6

4.2 Getting Started

First, let’s make sure that your API authentication tokens have been imported into cbapi. Once that’s done, then read
on for the key concepts that will explain how to interact with Carbon Black APIs via cbapi.

Feel free to follow along with this document or watch the Development Environment Setup video on the Developer
Network website.

4.2.1 API Authentication

Cb Response and Cb Protection use a per-user API secret token to authenticate requests via the API. The API token
confers the same permissions and authorization as the user it is associated with, so protect the API token with the same
care as a password.

To learn how to obtain the API token for a user, see the Developer Network website: there you will find instructions
for obtaining an API token for Cb Response and Cb Protection.

Once you have the API token, cbapi helps keep your credentials secret by enforcing the use of a credential file. To
encourage sharing of scripts across the community while at the same time protecting the security of our customers,
cbapi strongly discourages embedding credentials in individual scripts. Instead, you can place credentials for several
Cb Response or Cb Protection servers inside the API credential file and select which “profile” you would like to use
at runtime.

To create the initial credential file, a simple-to-use script is provided. Just run the cbapi-response,
cbapi-protection, or cbapi-defense script with the configure argument. On Mac OS X and Linux:

$ cbapi-response configure

Alternatively, if you’re using Windows (change c:\python27 if Python is installed in a different directory):

C:\> python c:\python27\scripts\cbapi-response configure

This configuration script will walk you through entering your API credentials and will save them to your current user’s
credential file location, which is located in the .carbonblack directory in your user’s home directory.

4.2.2 Your First Query

Now that you have cbapi installed and configured, let’s run a simple query to make sure everything is functional:

$ python
Python 2.7.10 (default, Jun 22 2015, 12:25:23)
[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from cbapi.response import *
>>> c = CbResponseAPI()
>>> print(c.select(Process).first().cmdline)
C:\Windows\system32\services.exe

That’s it! Now on to the next step, learning the concepts behind cbapi.

4.3 Concepts

There are a few critical concepts that will make understanding and using the cbapi easier. These concepts are explained
below, and also covered in a slide deck presented at the Carbon Black regional User Exchanges in 2016. You can see

4.2. Getting Started 11

https://developer.carbonblack.com/guide/enterprise-response/development-environment-video/
https://developer.carbonblack.com/reference/enterprise-response/authentication/
https://developer.carbonblack.com/reference/enterprise-protection/authentication/

cbapi Documentation, Release 1.3.6

the slide deck here.

At a high level, the cbapi tries to represent data in Cb Response or Cb Protection as Python objects. If you’ve worked
with SQL Object-relational Mapping (ORM) frameworks before, then this structure may seem familiar – cbapi was
designed to operate much like an ORM such as SQLAlchemy or Ruby’s ActiveRecord. If you haven’t worked with
one of these libraries, don’t worry! The concepts will become clear after a little practice.

4.3.1 Model Objects

Everything in cbapi is represented in terms of “Model Objects”. A Model Object in cbapi represents a single instance
of a specific type of data in Cb Response or Protection. For example, a process document from Cb Response (as seen on
an Analyze Process page in the Web UI) is represented as a cbapi.response.models.Process Model Object.
Similarly, a file instance in Cb Protection is represented as a cbapi.protection.models.FileInstance
Model Object.

Once you have an instance of a Model Object, you can access all of the data contained within as Python properties.
For example, if you have a Process Model Object named proc and you want to print its command line (which is
stored in the cmdline property), you would write the code:

>>> print(proc.cmdline)

This would automatically retrieve the cmdline attribute of the process and print it out to your screen.

The data in Cb Response and Protection may change rapidly, and so a comprehensive list of valid properties is difficult
to keep up-to-date. Therefore, if you are curious what properties are available on a specific Model Object, you can
print that Model Object to the screen. It will dump all of the available properties and their current values. For example:

>>> print(binary)
cbapi.response.models.Binary:
-> available via web UI at https://cbserver/#binary/08D1631FAF39538A133D94585644D5A8
host_count : 1
digsig_result : Signed
observed_filename : [u'c:\\windows\\syswow64\\appwiz.cpl']
product_version : 6.2.9200.16384
legal_copyright : © Microsoft Corporation. All rights reserved.
digsig_sign_time : 2012-07-26T08:56:00Z
orig_mod_len : 669696
is_executable_image : False
is_64bit : False
digsig_publisher : Microsoft Corporation
...

In this example, host_count, orig_mod_len, etc. are all properties available on this Binary Model Object.
Sometimes, properties are not available on every instance of a Model Object. In this case, you can use the .get()
method to retrieve the property, and return a default value if the property does not exist on the Model Object:

>>> print(binary.get("product_version", "<unknown>"))
6.2.9200.16384

In summary, Model Objects contain all the data associated with a specific type of API call. In this example, the
cbapi.response.models.Binary Model Object reflects all the data available via the /api/v1/binary
API route on a Cb Response server.

12 Chapter 4. User Guide

https://speakerdeck.com/cbdevnet/carbon-black-python-api-summer-2016

cbapi Documentation, Release 1.3.6

4.3.2 Joining Model Objects

Many times, there are relationships between different Model Objects. To make navigating these relationships easy,
cbapi provides special properties to “join” Model Objects together. For example, a cbapi.response.models.
Process Model Object can reference the cbapi.response.models.Sensor or cbapi.response.
models.Binary associated with this Process.

In this case, special “join” properties are provided for you. When you use one of these properties, cbapi will automat-
ically retrieve the associated Model Object, if necessary.

This capability may sound like a performance killer, causing many unnecessary API calls in order to gather this data.
However, cbapi has extensive Model Object caching built-in, so multiple requests for the same data will be eliminated
and an API request is only made if the cache does not already contain the requested data.

For example, to print the name of the Sensor Group assigned to the Sensor that ran a specific Process:

>>> print(proc.sensor.group.name)
Default Group

Behind the scenes, this makes at most two API calls: one to obtain the Sensor associated with the Process, then another
to obtain the Sensor Group that Sensor is part of. If either the Sensor or Sensor Group are already present in cbapi’s
internal cache, the respective API call is not made and the data is returned directly from the internal cache.

In summary, some Model Objects have special “join” properties that provide easy access to related Model Objects. A
list of “join” properties is included as part of the documentation for each Model Object.

4.3.3 Queries

Now that we’ve covered how to get data out of a specific Model Object, we now need to learn how to obtain Model
Objects in the first place! To do this, we have to create and execute a Query. cbapi Queries use the same query syntax
accepted by Cb Response or Protection’s APIs, and add a few little helpful features along the way.

To create a query in cbapi, use the .select() method on the CbResponseAPI or CbProtectionAPI object. Pass
the Model Object type as a parameter to the .select() call and optionally add filtering criteria with .where()
clauses.

Let’s start with a simple query for Cb Response:

>>> from cbapi.response import *
>>> cb = CbResponseAPI()
>>> cb.select(Process).where("process_name:cmd.exe")
<cbapi.response.rest_api.Query object at 0x1068815d0>

This returns a prepared Query object with the query string process_name:cmd.exe. Note that at this point no
API calls have been made. The cbapi Query objects are “lazy” in that they are only evaluated when you use them. If
you create a Query object but never attempt to retrieve any results, no API call is ever made (I suppose that answers
the age-old question; if a Query object is created, but nobody uses it, it does not make a sound, after all).

What can we do with a Query? The first thing we can do is compose new Queries. Most Query types in cbapi can
be “composed”; that is, you can create a new query from more than one query string. This can be useful if you have
a “base” query and want to add additional filtering criteria. For example, if we take the query above and add the
additional filtering criteria (filemod:*.exe or filemod:*.dll), we can write:

>>> base_query = cb.select(Process).where("process_name:cmd.exe")
>>> composed_query = base_query.where("(filemod:*.exe or filemod:*.dll")

Now the composed_query is equivalent to a query of process_name:cmd.exe (filemod:*.exe or
filemod:*.dll). You can also add sorting criteria to a query:

4.3. Concepts 13

cbapi Documentation, Release 1.3.6

>>> sorted_query = composed_query.sort("last_update asc")

Now when we execute the sorted_query, the results will be sorted by the last server update time in ascending
order.

Ok, now we’re ready to actually execute a query and retrieve the results. You can think of a Query as a kind of
“infinite” Python list. Generally speaking, you can use all the familiar ways to access a Python list to access the results
of a cbapi query. For example:

>>> len(base_query) # How many results were returned for the query?
3

>>> base_query[:2] # I want the first two results
[<cbapi.response.models.Process: id 00000003-0000-036c-01d2-2efd3af51186-00000001> @
→˓https://cbserver,
<cbapi.response.models.Process: id 00000003-0000-07d4-01d2-2efcd4949dfc-00000001> @
→˓https://cbserver]

>>> base_query[-1:] # I want the last result
[<cbapi.response.models.Process: id 00000002-0000-0f2c-01d2-2a57625ca0dd-00000001> @
→˓https://cbserver]

>>> for proc in base_query: # Loop over all the results
>>> print(proc.cmdline)
"C:\Windows\system32\cmd.exe"
"C:\Windows\system32\cmd.exe"
"C:\Windows\system32\cmd.exe"

>>> procs = list(base_query) # Just make a list of all the results

In addition to using a Query object as an array, two helper methods are provided as common shortcuts. The first
method is .one(). The .one() method is useful when you know only one result should match your query; it will
throw a MoreThanOneResultError exception if there are zero or more than one results for the query. The second
method is .first(), which will return the first result from the result set, or None if there are no results.

Every time you access a Query object, it will perform a REST API query to the Carbon Black server. For large result
sets, the results are retrieved in batches- by default, 100 results per API request on Cb Response and 1,000 results per
API request on Cb Protection. The search queries themselves are not cached, but the resulting Model Objects are.

4.3.4 Retrieving Objects by ID

Every Model Object (and in fact any object addressable via the REST API) has a unique ID associated with it. If you
already have a unique ID for a given Model Object, for example, a Process GUID for Cb Response, or a Computer
ID for Cb Protection, you can ask cbapi to give you the associated Model Object for that ID by passing that ID to the
.select() call. For example:

>>> binary = cb.select(Binary, "CA4FAFFA957C71C006B59E29DFE3EB8B")
>>> print(binary.file_desc)
PNRP Name Space Provider

Note that retrieving an object via .select()with the ID does not automatically request the object from the server via
the API. If the Model Object is already in the local cache, the locally cached version is returned. If it is not, a “blank”
Model Object is created and is initialized only when an attempt is made to read a property. Therefore, assuming
an empty cache, in the example above, the REST API query would not happen until the second line (the print
statement). If you want to ensure that an object exists at the time you call .select(), add the force_init=True

14 Chapter 4. User Guide

cbapi Documentation, Release 1.3.6

keyword parameter to the .select() call. This will cause cbapi to force a refresh of the object and if it does not
exist, cbapi will throw a ObjectNotFoundError exception.

4.3.5 Creating New Objects

The Cb Response and Protection REST APIs provide the ability to insert new data under certain circumstances. For
example, the Cb Response REST API allows you to insert a new banned hash into its database. Model Objects that
represent these data types can be “created” in cbapi by using the create() method:

>>> bh = cb.create(BannedHash)

If you attempt to create a Model Object that cannot be created, you will receive a ApiError exception.

Once a Model Object is created, it’s blank (it has no data). You will need to set the required properties and then call
the .save() method:

>>> bh = cb.create(BannedHash)
>>> bh.text = "Banned from API"
>>> bh.md5sum = "CA4FAFFA957C71C006B59E29DFE3EB8B"
>>> bh.save()

If you don’t fill out all the properties required by the API, then you will receive an InvalidObjectError exception
with a list of the properties that are required and not currently set.

Once the .save() method is called, the appropriate REST API call is made to create the object. The Model Object
is then updated to the current state returned by the API, which may include additional data properties initialized by Cb
Response or Protection.

4.3.6 Modifying Existing Objects

The same .save() method can be used to modify existing Model Objects if the REST API provides that capability.
If you attempt to modify a Model Object that cannot be changed, you will receive a ApiError exception.

For example, if you want to change the “jgarman” user’s password to “cbisawesome”:

>>> user = cb.select(User, "jgarman")
>>> user.password = "cbisawesome"
>>> user.save()

4.3.7 Deleting Objects

Simply call the .delete() method on a Model Object to delete it (again, if you attempt to delete a Model Object
that cannot be deleted, you will receive a ApiError exception).

Example:

>>> user = cb.select(User, "jgarman")
>>> user.delete()

4.3.8 Tracking Changes to Objects

Internally, Model Objects track all changes between when they were last refreshed from the server up until .save()
is called. If you’re interested in what properties have been changed or added, simply print the Model Object.

4.3. Concepts 15

cbapi Documentation, Release 1.3.6

You will see a display like the following:

>>> user = cb.create(User)
>>> user.username = "jgarman"
>>> user.password = "cbisawesome"
>>> user.first_name = "Jason"
>>> user.last_name = "Garman"
>>> user.teams = []
>>> user.global_admin = False
>>> print(user)
User object, bound to https://cbserver.
Partially initialized. Use .refresh() to load all attributes

(+) email: jgarman@carbonblack.com
(+) first_name: Jason
(+) global_admin: False

id: None
(+) last_name: Garman
(+) password: cbisawesome
(+) teams: []
(+) username: jgarman

Here, the (+) symbol before a property name means that the property will be added the next time that .save() is
called. Let’s call .save() and modify one of the Model Object’s properties:

>>> user.save()
>>> user.first_name = "J"
>>> print(user)
print(user)
User object, bound to https://cbserver.
Last refreshed at Mon Nov 7 16:54:00 2016

auth_token: 8b2dcf9d59b7da1a0b2b4ec50a77d8ca3d7dcb9c
email: jgarman@carbonblack.com

(*) first_name: J
global_admin: False

id: jgarman
last_name: Garman

teams: []
username: jgarman

The (*) symbol means that a property value will be changed the next time that .save() is called. This time, let’s
forget about our changes by calling .reset() instead:

>>> user.reset()
>>> print(user.first_name)
Jason

Now the user Model Object has been restored to the original state as it was retrieved from the server.

4.4 Logging & Diagnostics

The cbapi provides extensive logging facilities to track down issues communicating with the REST API and understand
potential performance bottlenecks.

16 Chapter 4. User Guide

cbapi Documentation, Release 1.3.6

4.4.1 Enabling Logging

The cbapi uses Python’s standard logging module for logging. To enable debug logging for the cbapi, you can do
the following:

>>> import logging
>>> root = logging.getLogger()
>>> root.addHandler(logging.StreamHandler())
>>> logging.getLogger("cbapi").setLevel(logging.DEBUG)

All REST API calls, including the API endpoint, any data sent via POST or PUT, and the time it took for the call to
complete:

>>> user.save()
Creating a new User object
Sending HTTP POST /api/user with {"email": "jgarman@carbonblack.com", "first_name":
→˓"Jason", "global_admin": false, "id": null, "last_name": "Garman", "password":
→˓"cbisawesome", "teams": [], "username": "jgarman"}
HTTP POST /api/user took 0.079s (response 200)
Received response: {u'result': u'success'}
HTTP GET /api/user/jgarman took 0.011s (response 200)

4.5 Cb Response API Examples

Now that we’ve covered the basics, let’s step through a few examples using the Cb Response API. In these exam-
ples, we will assume the following boilerplate code to enable logging and establish a connection to the “default” Cb
Response server in our credential file:

>>> import logging
>>> root = logging.getLogger()
>>> root.addHandler(logging.StreamHandler())
>>> logging.getLogger("cbapi").setLevel(logging.DEBUG)

>>> from cbapi.response import *
>>> cb = CbResponseAPI()

With that boilerplate out of the way, let’s take a look at a few examples.

4.5.1 Download a Binary from Cb Response

Let’s grab a binary that Cb Response has collected from one of the endpoints. This can be useful if you want to send
this binary for further automated analysis or pull it down for manual reverse engineering. You can see a full example
with command line options in the examples directory: binary_download.py.

Let’s step through the example:

>>> import shutil
>>> md5 = "7FB55F5A62E78AF9B58D08AAEEAEF848"
>>> binary = cb.select(Binary, md5)
>>> shutil.copyfileobj(binary.file, open(binary.original_filename, "wb"))

First, we select the binary by its primary key: the MD5 hash of the binary contents. The third line requests the binary
file data by accessing the file property on the Binary Model Object. The file property acts as a read-only, Python
file-like object. In this case, we use the Python shutil library to copy one file object to another. The advantage of

4.5. Cb Response API Examples 17

cbapi Documentation, Release 1.3.6

using shutil is that the file is copied in chunks, and the full file does not have to be read into memory before saving
it to disk.

Another way to use the file property is to call .read() on it just like any other Python file object. The following
code will read the first two bytes from the Binary:

>> binary.file.read(2)
"MZ"

4.5.2 Ban a Binary

Now let’s take this binary and add a Banning rule for it. To do this, we create a new BannedHash Model Object:

>>> bh = cb.create(BannedHash)
>>> bh.md5hash = binary.md5
>>> bh.text = "Banned from API"
>>> bh.enabled = True
>>> bh.save()
Creating a new BannedHash object
Sending HTTP POST /api/v1/banning/blacklist with {"md5hash":
→˓"7FB55F5A62E78AF9B58D08AAEEAEF848", "text": "banned from API"}
HTTP POST /api/v1/banning/blacklist took 0.035s (response 200)
Received response: {u'result': u'success'}
HTTP GET /api/v1/banning/blacklist/7FB55F5A62E78AF9B58D08AAEEAEF848 took 0.039s
→˓(response 200)

Note that if the hash is already banned in Cb Response, then you will receive a ServerError exception with the message
that the banned hash already exists.

4.5.3 Isolate a Sensor

Switching gears, let’s take a Sensor and quarantine it from the network. The Cb Response network isolation function-
ality allows administrators to isolate endpoints that may be actively involved in an incident, while preserving access
to perform Live Response on that endpoint and collect further endpoint telemetry.

To isolate a sensor, we first need to acquire its Sensor Model Object:

>>> sensor = cb.select(Sensor).where("hostname:HOSTNAME").first()

This will select the first sensor that matches the hostname HOSTNAME. Now we can isolate that machine:

>>> sensor.isolate()
Updating Sensor with unique ID 4
Sending HTTP PUT /api/v1/sensor/4 with {"boot_id": "0", "build_id": 5, "build_version_
→˓string": "005.002.000.61003", ...}
HTTP PUT /api/v1/sensor/4 took 0.129s (response 204)
HTTP GET /api/v1/sensor/4 took 0.050s (response 200)
...
True

The .isolate() method will keep polling the Cb Response server until the sensor has confirmed that it is now
isolated from the network. If the sensor is offline or otherwise unreachable, this call could never return. Therefore,
there is also a timeout= keyword parameter that can be used to set an optional timeout that, if reached, will throw a
TimeoutError exception. The .isolate() function returns True when the sensor is successfully isolated.

When you’re ready to restore full network connectivity to the sensor, simply call the .unisolate() method:

18 Chapter 4. User Guide

cbapi Documentation, Release 1.3.6

>>> sensor.unisolate()
Updating Sensor with unique ID 4
Sending HTTP PUT /api/v1/sensor/4 with {"boot_id": "0", "build_id": 5, "build_version_
→˓string": "005.002.000.61003", ...}
HTTP PUT /api/v1/sensor/4 took 0.077s (response 204)
HTTP GET /api/v1/sensor/4 took 0.020s (response 200)
...
True

Again, once the sensor is back on the network, the .unisolate()method will return True. Just like .isolate(),
you can optionally specify a timeout using the timeout= keyword parameter.

4.5.4 Querying Processes and Events

Now, let’s do some queries into the Cb Response database. The true power of Cb Response is its continuous recording
and powerful query language that allows you to go back in time and track the root cause of any security incident on
your endpoints. Let’s start with a simple query to find instances of a specific behavioral IOC, where our attacker used
the built-in Windows tool net.exe to mount an internal network share. We will iterate over all uses of net.exe to
mount our target share, printing out the parent processes that led to the execution of the offending command:

>>> query = cb.select(Process).where("process_name:net.exe").and_(r
→˓"cmdline:\\test\blah").group_by("id")
>>> def print_details(proc, depth):
... print("%s%s: %s ran %s" % (" "*depth, proc.start, proc.username, proc.
→˓cmdline))
...
>>> for proc in query:
... print_details(proc, 0)
... proc.walk_parents(print_details)
...
HTTP GET /api/v1/process?cb.urlver=1&facet=false&q=process_name%3Anet.exe+cmdline%3A
→˓%5C%5Ctest%5Cblah&rows=100&sort=last_update+desc&start=0 took 0.462s (response 200)
2016-11-11 20:59:31.631000: WIN-IA9NQ1GN8OI\bit9rad ran net use y: \\test\blah
HTTP GET /api/v3/process/00000003-0000-036c-01d2-2efd3af51186/1/event took 0.036s
→˓(response 200)
2016-10-25 20:20:29.790000: WIN-IA9NQ1GN8OI\bit9rad ran "C:\Windows\system32\cmd.exe"
HTTP GET /api/v3/process/00000003-0000-0c34-01d2-2ec94f09cae6/1/event took 0.213s
→˓(response 200)
2016-10-25 14:08:49.651000: WIN-IA9NQ1GN8OI\bit9rad ran C:\Windows\Explorer.EXE

HTTP GET /api/v3/process/00000003-0000-0618-01d2-2ec94edef208/1/event took 0.013s
→˓(response 200)
2016-10-25 14:08:49.370000: WIN-IA9NQ1GN8OI\bit9rad ran

→˓C:\Windows\system32\userinit.exe
HTTP GET /api/v3/process/00000003-0000-02ec-01d2-2ec9412b4b70/1/event took 0.017s
→˓(response 200)

2016-10-25 14:08:26.382000: SYSTEM ran winlogon.exe
HTTP GET /api/v3/process/00000003-0000-02b0-01d2-2ec94115df7a/1/event took 0.012s
→˓(response 200)

2016-10-25 14:08:26.242000: SYSTEM ran \SystemRoot\System32\smss.exe 00000001
→˓00000030
HTTP GET /api/v3/process/00000003-0000-0218-01d2-2ec93f813429/1/event took 0.021s
→˓(response 200)

2016-10-25 14:08:23.590000: SYSTEM ran \SystemRoot\System32\smss.exe
HTTP GET /api/v3/process/00000003-0000-0004-01d2-2ec93f7c7181/1/event took 0.081s
→˓(response 200)

2016-10-25 14:08:23.559000: SYSTEM ran c:\windows\system32\ntoskrnl.exe
(continues on next page)

4.5. Cb Response API Examples 19

cbapi Documentation, Release 1.3.6

(continued from previous page)

HTTP GET /api/v3/process/00000003-0000-0000-01d2-2ec93f6051ee/1/event took 0.011s
→˓(response 200)

2016-10-25 14:08:23.374000: ran c:\windows\system32\ntoskrnl.exe
HTTP GET /api/v3/process/00000003-0000-0004-01d2-2ec93f6051ee/1/event took 0.011s
→˓(response 200)
2016-11-11 20:59:25.667000: WIN-IA9NQ1GN8OI\bit9rad ran net use z: \\test\blah
2016-10-25 20:20:29.790000: WIN-IA9NQ1GN8OI\bit9rad ran "C:\Windows\system32\cmd.exe"
2016-10-25 14:08:49.651000: WIN-IA9NQ1GN8OI\bit9rad ran C:\Windows\Explorer.EXE
2016-10-25 14:08:49.370000: WIN-IA9NQ1GN8OI\bit9rad ran

→˓C:\Windows\system32\userinit.exe
2016-10-25 14:08:26.382000: SYSTEM ran winlogon.exe
2016-10-25 14:08:26.242000: SYSTEM ran \SystemRoot\System32\smss.exe 00000001

→˓00000030
2016-10-25 14:08:23.590000: SYSTEM ran \SystemRoot\System32\smss.exe
2016-10-25 14:08:23.559000: SYSTEM ran c:\windows\system32\ntoskrnl.exe
2016-10-25 14:08:23.374000: ran c:\windows\system32\ntoskrnl.exe

That was a lot in one code sample, so let’s break it down part-by-part.

First, we set up the query variable by creating a new Query object using the .where() and .and_() methods.
Next, we define a function that will get called on each parent process all the way up the chain to the system kernel
loading during the boot process. This function, print_details, will print a few data points about each process:
namely, the local endpoint time when that process started, the user who spawned the process, and the command line
for the process.

Finally, we execute our query by looping over the result set with a Python for loop. For each process that matches the
query, first we print details of the process itself (the process that called net.exewith a command line argument of our
target share \\test\blah), then calls the .walk_parents() helper method to walk up the chain of all parent
processes. Each level of parent process (the “depth”) is represented by an extra space; therefore, reading backwards,
you can see that ntoskrnl.exe spawned smss.exe, which in turn spawned winlogon.exe, and so on. You
can see the full backwards chain of events that ultimately led to the execution of each of these net.exe calls.

Remember that we have logging turned on for these examples, so you see each of the HTTP GET requests to retrieve
process event details as they happen. Astute observers will note that walking the parents of the second net.exe
command, where the \\test\blah share was mounted on the z: drive, did not trigger additional HTTP GET
requests. This is thanks to cbapi’s caching layer. Since both net.exe commands ran as part of the same command
shell session, the parent processes are shared between the two executions. Since the parent processes were already
requested as part of the previous walk up the chain of parent processes, cbapi did not re-request the data from the
server, instead using its internal cache to satisfy the process information requests from this script.

New Filters: Group By, Time Restrictions

In the query above, there is an extra .group_by() method. This method is new in cbapi 1.1.0 and is part of five new
query filters available when communicating with a Cb Response 6.1 server. These filters are accessible via methods
on the Process Query object. These new methods are:

• .group_by() - Group the result set by a field in the response. Typically you will want to group by id, which
will ensure that the result set only has one result per process rather than one result per event segment. For more
information on processes, process segments, and how segments are stored in Cb Response 6.0, see the Process
API Changes for Cb Response 6.0 page on the Developer Network website.

• .min_last_update() - Only return processes that have events after a given date/time stamp (relative to the
individual sensor’s clock)

• .max_last_update() - Only return processes that have events before a given date/time stamp (relative to
the individual sensor’s clock)

20 Chapter 4. User Guide

https://developer.carbonblack.com/reference/enterprise-response/6.1/process-api-changes/
https://developer.carbonblack.com/reference/enterprise-response/6.1/process-api-changes/

cbapi Documentation, Release 1.3.6

• .min_last_server_update() - Only return processes that have events after a given date/time stamp
(relative to the Cb Response server’s clock)

• .max_last_server_update() - Only return processes that have events before a given date/time stamp
(relative to the Cb Response server’s clock)

Cb Response 6.1 uses a new way of recording process events that greatly increases the speed and scale of collection,
allowing you to store and search data for more endpoints on the same hardware. Details on the new database format
can be found on the Developer Network website at the Process API Changes for Cb Response 6.0 page.

The Process Model Object traditionally referred to a single “segment” of events in the Cb Response database. In
Cb Response versions prior to 6.0, a single segment will include up to 10,000 individual endpoint events, enough to
handle over 95% of the typical event activity for a given process. Therefore, even though a Process Model Object
technically refers to a single segment in a process, since most processes had less than 10,000 events and therefore were
only comprised of a single segment, this distinction wasn’t necessary.

However, now that processes are split across many segments, a better way of handling this is necessary. Therefore, Cb
Response 6.0 introduces the new .group_by() method.

More on Filters

Querying for a process will return all segments that match. For example, if you search for process_name:cmd.
exe, the result set will include all segments of all cmd.exe processes. Therefore, Cb Response 6.1 introduced the
ability to “group” result sets by a field in the result. Typically you will want to group by the internal process id (the id
field), and this is what we did in the query above. Grouping by the id field will ensure that only one result is returned
per process rather than per segment.

Let’s take a look at an example:

>>> from datetime import datetime, timedelta
>>> yesterday = datetime.utcnow() - timedelta(days=1) # Get "yesterday" in GMT
>>> for proc in c.select(Process).where("process_name:cmd.exe").min_last_
→˓update(yesterday):
... print proc.id, proc.segment
DEBUG:cbapi.connection:HTTP GET /api/v1/process?cb.min_last_update=2017-05-21T18%3A41
→˓%3A58Z&cb.urlver=1&facet=false&q=process_name%3Acmd.exe&rows=100&sort=last_
→˓update+desc&start=0 took 2.164s (response 200)
00000001-0000-0e48-01d2-c2a397f4cfe0 1495465643405
00000001-0000-0e48-01d2-c2a397f4cfe0 1495465407157
00000001-0000-0e48-01d2-c2a397f4cfe0 1495463680155
00000001-0000-0e48-01d2-c2a397f4cfe0 1495463807694
00000001-0000-0e48-01d2-c2a397f4cfe0 1495463543944
00000001-0000-0e48-01d2-c2a397f4cfe0 1495463176570
00000001-0000-0e48-01d2-c2a397f4cfe0 1495463243492

Notice that the “same” process ID is returned seven times, but with seven different segment IDs. Cb Response will
return every process event segment that matches a given query, in this case, any event segment that contains the process
command name cmd.exe.

That is, however, most likely not what you wanted. Instead, you’d like a list of the unique processes associated with
the command name cmd.exe. Just add the .group_by("id") filter to your query:

>>> for proc in c.select(Process).where("process_name:cmd.exe").min_last_
→˓update(yesterday).group_by("id"):
... print proc.id, proc.segment
DEBUG:cbapi.connection:HTTP GET /api/v1/process?cb.group=id&cb.min_last_update=2017-
→˓05-21T18%3A41%3A58Z&cb.urlver=1&facet=false&q=process_name%3Acmd.exe&rows=100&
→˓sort=last_update+desc&start=0 took 2.163s (response 200)

(continues on next page)

4.5. Cb Response API Examples 21

https://developer.carbonblack.com/reference/enterprise-response/6.1/process-api-changes/

cbapi Documentation, Release 1.3.6

(continued from previous page)

00000001-0000-0e48-01d2-c2a397f4cfe0 1495465643405

4.5.5 Feed and Watchlist Maintenance

The cbapi provides several helper functions to assist in creating watchlists and

Watchlists are simply saved Queries that are automatically run on the Cb Response server on a periodic basis. Results
of the watchlist are tagged in the database and optionally trigger alerts. Therefore, a cbapi Query can easily be
converted into a watchlist through the Query .create_watchlist() function:

>>> new_watchlist = query.create_watchlist("[WARN] Attempts to mount internal share")
Creating a new Watchlist object
Sending HTTP POST /api/v1/watchlist with {"id": null, "index_type": "events", "name":
→˓"[WARN] Attempts to mount internal share", "search_query": "facet=false&q=process_
→˓name%3Anet.exe+cmdline%3A%5C%5Ctest%5Cblah&cb.urlver=1&sort=last_update+desc"}
HTTP POST /api/v1/watchlist took 0.510s (response 200)
Received response: {u'id': 222}
Only received an ID back from the server, forcing a refresh
HTTP GET /api/v1/watchlist/222 took 0.034s (response 200)

This helper function will automatically create a watchlist from the Query object with the given name.

If you have a watchlist that already exists, the Watchlist Model Object can help you extract the human-readable query
from the watchlist. Just select the watchlist and access the .query property on the Watchlist Model Object:

>>> my_watchlist = cb.select(Watchlist).where("name:[WARN] Attempts to mount internal
→˓share").one()
>>> print(my_watchlist.query)
process_name:net.exe cmdline:\\test\blah

You can also execute the query straight from the Watchlist Model Object:

>>> len(my_watchlist.search())
HTTP GET /api/v1/process?cb.urlver=1&facet=false&q=process_name%3Anet.exe+cmdline%3A
→˓%5C%5Ctest%5Cblah&rows=0&start=0 took 0.477s (response 200)
2

And finally, you can of course enable and disable Watchlists:

>>> my_watchlist.enabled = False
>>> my_watchlist.save()
Updating Watchlist with unique ID 222
Sending HTTP PUT /api/v1/watchlist/222 with {"alliance_id": null, "date_added": "2016-
→˓11-15 23:48:27.615993-05:00", "enabled": false, "from_alliance": false, "group_id":
→˓-1, "id": "222", "index_type": "events", "last_hit": "2016-11-15 23:50:08.448685-
→˓05:00", "last_hit_count": 2, "name": "[WARN] Attempts to mount internal share",
→˓"readonly": false, "search_query": "facet=false&q=process_name%3Anet.exe%20cmdline
→˓%3A%5C%5Ctest%5Cblah&cb.urlver=1", "search_timestamp": "2016-11-16T04:50:01.750240Z
→˓", "total_hits": "2", "total_tags": "2"}
HTTP PUT /api/v1/watchlist/222 took 0.036s (response 200)
Received response: {u'result': u'success'}
HTTP GET /api/v1/watchlist/222 took 0.029s (response 200)

You can see more examples of Feed and Watchlist maintenance in the feed_operations.py and
watchlist_operations.py example scripts.

22 Chapter 4. User Guide

cbapi Documentation, Release 1.3.6

4.5.6 Managing Threat Reports & Alerts

The cbapi provides helper functions to manage alerts and threat reports in bulk. The Query objects associated with the
ThreatReport and Alert Model Objects provide a few bulk operations to help manage large numbers of Threat Reports
and Alerts, respectively.

To mark a large number of Threat Reports as false positives, create a query that matches the Reports you’re interested
in. For example, if every Report from the Feed named “SOC” that contains the word “FUZZYWOMBAT” in the
report title should be considered a false positive (and no longer trigger Alerts), you can write the following code to do
so:

>>> feed = c.select(Feed).where("name:SOC").one()
>>> report_query = feed.reports.where("title:FUZZYWOMBAT")
>>> report_query.set_ignored()

Similar actions can be taken on Alerts. The AlertQuery object exposes three helper methods to perform bulk operations
on sets of Alerts: .set_ignored(), .assign_to(), and .change_status().

4.5.7 Joining Everything Together

Now that we’ve examined how to request information on binaries, sensors, and processes through cbapi, let’s chain this
all together using the “join” functionality of cbapi’s Model Objects. Let’s just tweak the print_details function
from above to add a few more contextual details. Our new function will now include the following data points for each
process:

• The hostname the process was executed on

• The sensor group that host belongs to

• If the binary was signed, also print out:

– The number of days between when the binary was signed and it was executed on the endpoint

– The verified publisher name from the digital signature

We can transparently “join” between the Process Model Object and the Sensor, Sensor Group, and Binary Model
Objects using the appropriately named helper properties. Here’s the new function:

>>> import pytz

>>> def print_details(proc, depth):
... print("On host {0} (part of sensor group {1}):".format(proc.hostname, proc.
→˓sensor.group.name))
... print("- At {0}, process {1} was executed by {2}".format(proc.start, proc.
→˓cmdline, proc.username))
... if proc.binary.signed:
... # force local timestamp into UTC, we're just looking for an estimate here.
... utc_timestamp = proc.start.replace(tzinfo=pytz.timezone("UTC"))
... days_since_signed = (utc_timestamp - proc.binary.signing_data.sign_time).
→˓days
... print("- That binary ({0}) was signed by {1} {2} days before it was
→˓executed.".format(proc.process_md5,
... proc.binary.signing_data.publisher, days_since_signed))

Now if we run our for loop from above again:

>>> for proc in query:
... print_details(proc, 0)

(continues on next page)

4.5. Cb Response API Examples 23

cbapi Documentation, Release 1.3.6

(continued from previous page)

... proc.walk_parents(print_details)

...
HTTP GET /api/v1/process?cb.urlver=1&facet=false&q=process_name%3Anet.exe+cmdline%3A
→˓%5C%5Ctest%5Cblah&rows=100&sort=last_update+desc&start=0 took 0.487s (response 200)
HTTP GET /api/v1/sensor/3 took 0.037s (response 200)
HTTP GET /api/group/1 took 0.022s (response 200)
On host WIN-IA9NQ1GN8OI (part of sensor group Default Group):
- At 2016-11-11 20:59:31.631000, process net use y: \\test\blah was executed by WIN-
→˓IA9NQ1GN8OI\bit9rad
HTTP GET /api/v1/binary/79B6D4C5283FC806387C55B8D7C8B762/summary took 0.016s
→˓(response 200)
- That binary (79b6d4c5283fc806387c55b8d7c8b762) was signed by Microsoft Corporation
→˓1569 days before it was executed.
HTTP GET /api/v3/process/00000003-0000-036c-01d2-2efd3af51186/1/event took 0.045s
→˓(response 200)
On host WIN-IA9NQ1GN8OI (part of sensor group Default Group):
- At 2016-10-25 20:20:29.790000, process "C:\Windows\system32\cmd.exe" was executed
→˓by WIN-IA9NQ1GN8OI\bit9rad
HTTP GET /api/v1/binary/BF93A2F9901E9B3DFCA8A7982F4A9868/summary took 0.015s
→˓(response 200)
- That binary (bf93a2f9901e9b3dfca8a7982f4a9868) was signed by Microsoft Corporation
→˓1552 days before it was executed.

Those few lines of Python above are jam-packed with functionality. Now for each process execution, we have added
contextual information on the source host, the group that host is part of, and details about the signing status of the
binary that was executed. The magic is performed behind the scenes when we use the .binary and .sensor
properties on the Process Model Object. Just like our previous example, cbapi’s caching layer ensures that we do
not overload the Cb Response server with duplicate requests for the same data. In this example, multiple redundant
requests for sensor, sensor group, and binary data are all eliminated by cbapi’s cache.

4.5.8 Facets

The cbapi also provides functionality to pull facet information from the database. You can use the .facet() method
on a Query object to retrieve facet (ie. “group”) information for a given query result set. Here’s an example that pulls
the most common process names for our sample host:

>>> def print_facet_histogram(facets):
... for entry in facets:
... print("%15s: %5s%% %s" % (entry["name"][:15], entry["ratio"], u"\u25A0
→˓"*(int(entry["percent"])/2)))
...

>>> facet_query = cb.select(Process).where("hostname:WIN-IA9NQ1GN8OI").and_(
→˓"username:bit9rad")
>>> print_facet_histogram(facet_query.facets("process_name")["process_name"])

HTTP GET /api/v1/process?cb.urlver=1&facet=true&facet.field=process_name&facet.
→˓field=username&q=hostname%3AWIN-IA9NQ1GN8OI+username%3Abit9rad&rows=0&start=0 took
→˓0.024s (response 200)

chrome.exe: 23.4% ==
thumbnailextrac: 15.4% ================================

adobearm.exe: 8.6% ==================
taskhost.exe: 6.0% ============
conhost.exe: 4.7% =========

(continues on next page)

24 Chapter 4. User Guide

cbapi Documentation, Release 1.3.6

(continued from previous page)

ping.exe: 4.0% ========
wermgr.exe: 3.5% =======

In the above example, we just pulled one facet: the process_name; you can ask the server for faceting on multiple
fields in one query by simply listing the fields in the call to .facet(): for example, .facet("username",
"process_name") will produce a dictionary with two top-level keys: username and process_name.

4.5.9 Administrative Tasks

In addition to querying data, you can also perform various administrative tasks using cbapi.

Let’s create a user on our Cb Response server:

>>> user = cb.create(User)
>>> user.username = "jgarman"
>>> user.password = "cbisawesome"
>>> user.first_name = "Jason"
>>> user.last_name = "Garman"
>>> user.email = "jgarman@carbonblack.com"
>>> user.teams = []
>>> user.global_admin = False
Creating a new User object
Sending HTTP POST /api/user with {"email": "jgarman@carbonblack.com", "first_name":
→˓"Jason", "global_admin": false, "id": null, "last_name": "Garman", "password":
→˓"cbisawesome", "teams": [], "username": null}
HTTP POST /api/user took 0.608s (response 200)
Received response: {u'result': u'success'}

How about moving a sensor to a new Sensor Group:

>>> sg = cb.create(SensorGroup)
>>> sg.name = "Critical Endpoints"
>>> sg.site = 1
>>> sg.save()
Creating a new SensorGroup object
Sending HTTP POST /api/group with {"id": null, "name": "Critical Endpoints", "site_id
→˓": 1}
HTTP POST /api/group took 0.282s (response 200)
Received response: {u'id': 2}
Only received an ID back from the server, forcing a refresh
HTTP GET /api/group/2 took 0.011s (response 200)
>>> sensor = cb.select(Sensor).where("hostname:WIN-IA9NQ1GN8OI").first()
>>> sensor.group = sg
>>> sensor.save()
Updating Sensor with unique ID 3
Sending HTTP PUT /api/v1/sensor/3 with {"boot_id": "2", "build_id": 2, "build_version_
→˓string": "005.002.000.60922", ...
HTTP PUT /api/v1/sensor/3 took 0.087s (response 204)
HTTP GET /api/v1/sensor/3 took 0.030s (response 200)

4.6 CbAPI and Live Response

Working with the Cb Live Response REST API directly can be difficult. Thankfully, just like the rest of Carbon
Black’s REST APIs, cbapi provides Pythonic APIs to make working with the Live Response API much easier.

4.6. CbAPI and Live Response 25

cbapi Documentation, Release 1.3.6

In addition to easy-to-use APIs to call into Live Response, cbapi also provides a “job-based” interface that allows
cbapi to intelligently schedule large numbers of concurrent Live Response sessions across multiple sensors. Your code
can then be notified when the jobs are complete, returning the results of the job if it succeeded or the Exception if it
failed.

4.6.1 Getting Started with Live Response

The cbapi Live Response API is built around establishing a cbapi.response.live_response.
LiveResponseSession object from a cbapi.response.models.Sensor Model Object. Then you can
call methods on the LiveResponseSession object to perform Live Response actions on the target host. These
calls are synchronous, meaning that they will wait until the action is complete and a result is available, before returning
back to your script. Here’s an example:

>>> from cbapi.response import *
>>> cb = CbResponseAPI()
>>> sensor = cb.select(Sensor).where("hostname:WIN-IA9NQ1GN8OI").first()
>>> with sensor.lr_session() as session:
... print(session.get_file(r"c:\test.txt"))

this is a test

Since the Live Response API is synchronous, the script will not continue until either the Live Response session is
established and the file contents are retrieved, or an exception occurs (in this case, either a timeout error or an error
reading the file).

As seen in the example above, the .lr_session() method is context-aware. Cb Response has a limited number of
concurrent Live Response session slots (by default, only ten). By wrapping the .lr_session()

A full listing of methods in the cbapi Live Response API is available in the documentation for the cbapi.
live_response_api.CbLRSessionBase class.

4.6.2 Live Response Errors

There are four classes of errors that you will commonly encounter when working with the Live Response API:

• A cbapi.errors.TimeoutError is raised if a timeout is encountered when waiting for a response for a
Live Response API request.

• A cbapi.response.live_response_api.LiveResponseError is raised if an error is returned
during the execution of a Live Response command on an endpoint. The LiveResponseError includes
detailed information about the error that occurred, including the exact error code that was returned from the
endpoint and a textual description of the error.

• A cbapi.errors.ApiError is raised if you attempt to execute a command that is not supported by the
sensor; for example, attempting to acquire a memory dump from a sensor running a pre-5.1 version of the agent
will fail with an ApiError exception.

• A cbapi.errors.ServerError is raised if any other error occurs; for example, a 500 Internal Server
Error is returned from the Live Response API.

4.6.3 Job-Based API

The basic Synchronous API described above in the Getting Started section works well for small tasks, targeting
one sensor at a time. However, if you want to execute the same set of Live Response commands across a larger
number of sensors, the cbapi provides a Job-Based Live Response API. The Job-Based Live Response API provides

26 Chapter 4. User Guide

cbapi Documentation, Release 1.3.6

a straightforward API to submit Live Response jobs to a scheduler, schedule those Live Response jobs on individual
endpoints concurrently, and return results and any errors back to you when the jobs complete. The Job-Based Live
Response API is a natural fit with the Event-Based API to create IFTTT-style pipelines; if an event is received via the
Event API, then perform Live Response actions on the affected endpoint via the Live Response Job-Based API.

The Job-Based API works by first defining a reusable “job” to perform on the endpoint. The Job is simply a class or
function that takes a Live Response session object as input and performs a series of commands. Jobs can be as simple
as retrieving a registry key, or as complex as collecting the Chrome browser history for any currently logged-in users.

Let’s look at an example Job to retrieve a registry key. This example job is pulled from the get_reg_autoruns.py
example script:

class GetRegistryValue(object):
def __init__(self, registry_key):

self.registry_key = registry_key

def run(self, session):
reg_info = session.get_registry_value(self.registry_key)
return time.time(), session.sensor_id, self.registry_key, reg_info["value_data

→˓"]

To submit this job, you instantiate an instance of a GetRegistryValue class with the registry key you want to pull
back from the endpoint, and submit the .run() method to the Live Response Job API:

>>> job = GetRegistryValue(regmod_path)
>>> registry_job = cb.live_response.submit_job(job.run, sensor_id)

Your script resumes execution immediately after the call to .submit_job(). The job(s) that you’ve submitted will
be executed in a set of background threads managed by cbapi.

4.7 CbAPI Changelog

4.7.1 CbAPI 1.3.6 - Released February 14, 2018

This release has one critical fix:

• Fix a fatal exception when connecting to Cb Response 6.1.x servers

4.7.2 CbAPI 1.3.5 - Released February 2, 2018

This release includes bugfixes and contributions from the Carbon Black community.

All products:

• More Python 3 compatibility fixes.

• Fix the wait_for_completion and wait_for_output options in the Live Response .
create_process() method. If wait_for_completion is True, the call to .create_process()
will block until the remote process has exited. If wait_for_output is True, then .create_process()
will additionally wait until the output of the remote process is ready and return that output to the caller. Setting
wait_for_output to True automatically sets wait_for_completion to True as well.

• The BaseAPI constructor now takes three new optional keyword arguments to control the underlying con-
nection pool: pool_connections, pool_maxsize, and pool_block. These arguments are sent to the
underlying HTTPAdapter used when connecting to the Carbon Black server. For more information on these
parameters, see the Python requests module API documentation for HTTPAdapter.

4.7. CbAPI Changelog 27

http://docs.python-requests.org/en/master/api/#requests.adapters.HTTPAdapter

cbapi Documentation, Release 1.3.6

Cb Defense:

• Date/time stamps in the Device model object are now represented as proper Python datetime objects, rather than
integers.

• The policy_operations.py example script’s “Replace Rule” command is fixed.

• Add the Cb Live Response job-based API.

• Add a new example script list_devices.py

Cb Response:

• The Process and Binary model objects now return None by default when a non-existent attribute is refer-
enced, rather than throwing an exception.

• Fixes to walk_children.py example script.

• Fix exceptions in enumerating child processes, retrieving path and MD5sums from processes.

• Multiple .where() clauses can now be used in the Sensor model object.

• Workaround implemented for retrieving/managing more than 500 banned hashes.

• Alert bulk operations now work on batches of 500 alerts.

• .flush_events() method on Sensor model object no longer throws an exception on Cb Response 6.x
servers.

• .restart_sensor() method now available for Sensor model object.

• Fix user_operations.py example script to eliminate exception when adding a new user to an existing
team.

• Add .remove_team() method on User model object.

• Automatically set cb.legacy_5x_mode query parameter for all Process queries whenever a legacy Solr core
(from Cb Response 5.x) is loaded.

• Added .use_comprehensive_search() method to enable the “comprehensive search” option on a Pro-
cess query. See the Cb Developer Network documentation on Comprehensive Search for more information on
“comprehensive search”.

• Add .all_childprocs(), .all_modloads(), .all_filemods(), .all_regmods(), .
all_crossprocs(), and .all_netconns()methods to retrieve process events from all segments, rather
than the current process segment. You can also use the special segment “0” to retrieve process events across all
segments.

• Fix cmdline_filters in the IngressFilter model object.

Cb Protection:

• Tamper Protection can now be set and cleared in the Computer model object.

4.7.3 CbAPI 1.3.4 - Released September 14, 2017

This release includes a critical security fix and small bugfixes.

Security fix:

• The underlying CbAPI connection class erroneously disabled hostname validation by default. This does not
affect code that uses CbAPI through the public interfaces documented here; it only affects code that accesses
the new CbAPISessionAdapter class directly. This class was introduced in version 1.3.3. Regardless, it is
strongly recommended that all users currently using 1.3.3 upgrade to 1.3.4.

28 Chapter 4. User Guide

https://developer.carbonblack.com/reference/enterprise-response/6.1/process-api-changes/#process-joining-comprehensive-search

cbapi Documentation, Release 1.3.6

Bug fixes:

• Add rule filename parameter to Cb Defense policy_operations.py script’s add-rule command.

• Add support for tamperProtectionActive attribute to Cb Protection’s Computer object.

• Work around Cb Response issue- the /api/v1/sensor route incorrectly returns an HTTP 500 if no sensors
match the provided query. CbAPI now catches this exception and will instead return an empty set back to the
caller.

4.7.4 CbAPI 1.3.3 - Released September 1, 2017

This release includes security improvements and bugfixes.

Security changes:

• CbAPI enforces the use of HTTPS when connecting to on-premise Cb Response servers.

• CbAPI can optionally require TLSv1.2 when connecting to Carbon Black servers.

– Note that some versions of Python and OpenSSL, notably the version of OpenSSL packaged with Mac OS
X, do not support TLSv1.2. This will cause CbAPI to fail to connect to Cb Response 6.1+ servers which
require TLSv1.2 cipher suites.

– A new command, cbapi check-tls, will report the TLS version supported by your platform.

– To enforce the use of TLSv1.2 when connecting to a server, add ssl_force_tls_1_2=True to that
server’s credential profile.

• Add the ability to “pin” a specific server certificate to a credential profile.

– You can now force TLS certificate verification on self-signed, on-premise installations of Cb Response or
Protection through the ssl_cert_file option in the credential profile.

– To “pin” a server certificate, save the PEM-formatted server certificate to a file, and put the full path to that
PEM file in the ssl_cert_file option of that server’s credential profile.

– When using this option with on-premise Cb Response servers, you may also have to set
ssl_verify_hostname=False as the hostname in the certificate generated at install time is
localhost and will not match the server’s hostname or IP address. This option will still validate that
the server’s certificate is valid and matches the copy in the ssl_cert_file option.

Changes for Cb Protection:

• The API now sets the appropriate “GET” query fields when changing fields such as the debugFlags on the
Computer object.

• The .template attribute on the Computer model object has been renamed .templateComputer.

• Remove AppCatalog and AppTemplate model objects.

Changes for Cb Response:

• Added .webui_link property to Cb Response Query objects.

• Added ban_hash.py example.

Bug Fixes:

• Error handling is improved on Python 3. Live Response auto-reconnect functionality is now fixed on Python 3
as a result.

• Workaround implemented for Cb Response 6.1 where segment_ids are truncated on Alerts. The .process
attribute on an Alert now ignores the segment_id and links to the first Process segment.

4.7. CbAPI Changelog 29

cbapi Documentation, Release 1.3.6

• Fixed issue with Binary.signed and CbModLoadEvent.is_signed.

4.7.5 CbAPI 1.3.2 - Released August 10, 2017

This release introduces the Policy API for Cb Defense. A sample policy_operations.py script is now included
in the examples directory for Cb Defense.

Other changes:

• Cb Response

– Bugfixes to the User Model Object.

– New user_operations.py example script to manage users & teams.

– Additional Team Model Object to add/remove/modify user teams.

– New check_datasharing.py example script to check if third party data sharing is enabled for bina-
ries on any sensor groups.

– Documentation fix for the User Model Object.

– Fix to the watchlist_operations.py example script.

4.7.6 CbAPI 1.3.1 - Released August 3, 2017

This is a bugfix release with minor changes:

• Cb Response

– Add partition_operations.py script to demonstrate the use of the StoragePartition model object.

– Fix errors when accessing the .start attribute of child processes.

– Fix errors generated by the walk_children.py example script. The output has been changed as well
to indicate the process lifetime, console UI link, and command lines.

– Add an .end attribute to the Process model object. This attribute reports back either None if the
process is still executing, or the last event time associated with the process if it has exited. See the
walk_children.py script for an example of how to calculate process lifetime.

– Fix errors when using the .parents attribute of a Process.

– Add wait_for_completion flag to create_process Live Response method, and default to
True. The create_process method will now wait for the target process to complete before returning.

• Cb Defense

– Add wait_for_completion flag to create_process Live Response method, and default to
True. The create_process method will now wait for the target process to complete before returning.

4.7.7 CbAPI 1.3.0 - Released July 27, 2017

This release introduces the Live Response API for Cb Defense. A sample cblr_cli.py script is now included in
the examples directory for both Cb Response and Cb Defense.

Other changes:

• Cb Protection

– You can now create new FileRule and Policy model objects in cbapi.

30 Chapter 4. User Guide

cbapi Documentation, Release 1.3.6

• Cb Response

– Added watchlist_exporter.py and watchlist_importer.py scripts to the Cb Response ex-
amples directory. These scripts allow you to export Watchlist data in a human- and machine-readable
JSON format and then re-import them into another Cb Response server.

– The Sensor Model Object now uses the non-paginated (v1) API by default. This fixes any issues en-
countered when iterating over all the sensors and receiving duplicate and/or missing sensors.

– Fix off-by-one error in CbCrossProcess object.

– Fix issue iterating through ProcessModel Objects when accessing processes generated from a 5.2 server
after upgrading to 6.1.

– Reduce number of API requests required when accessing sibling information (parents, children, and sib-
lings) from the Process Model Object.

– Retrieve all events for a process when using segment ID of zero on a Cb Response 6.1 server.

– Behavior of Process.children attribute has changed:

* Only one entry is present per child (before there were up to two; one for the spawn event, one for the
terminate event)

* The timestamp is derived from the start time of the process, not the timestamp from the spawn event.
the two timestamps will be off by a few microseconds.

* The old behavior is still available by using the Process.childprocs attribute instead. This
incurs a performance penalty as another API call will have to be made to collect the childproc infor-
mation.

– Binary Model Object now returns False for .is_signed attribute if it is set to (Unknown).

• Moved the six Python module into cbapi and removed the external dependency.

4.7.8 CbAPI 1.2.0 - Released June 22, 2017

This release introduces compatibility with our new product, Cb Defense, as well as adding new Model Objects intro-
duced in the Cb Protection 8.0 APIs.

Other changes:

• Cb Response

– New method synchronize() added to the Feed Model Object

• Bug fixes and documentation improvements

4.7.9 CbAPI 1.1.1 - Released June 2, 2017

This release includes compatibility fixes for Cb Response 6.1. Changes from 1.0.1 include:

• Substantial changes to the Process Model Object for Cb Response 6.1. See details below.

• New StoragePartition Model Object to control Solr core loading/unloading in Cb Response 6.1.

• New IngressFilter Model Object to control ingress filter settings in Cb Response 6.1.

• Fix issues with event_export.py example script.

• Add .all_events property to the Process Model Object to expose a list of all events across all segments.

• Add example script to perform auto-banning based on watchlist hits from Cb Event Forwarder S3 output files.

4.7. CbAPI Changelog 31

cbapi Documentation, Release 1.3.6

• Add bulk operations to the ThreatReport and Alert Query objects:

– You can now call .set_ignored(), .assign(), and .change_status() on an Alert Query
object to change the respective fields for every Alert that matches the query.

– You can now call .set_ignored() on a ThreatReport Query object to set or clear the ignored flag
for every ThreatReport that matches the query.

Changes to Process Model Object for Cb Response 6.1

Cb Response 6.1 uses a new way of recording process events that greatly increases the speed and scale of collection,
allowing you to store and search data for more endpoints on the same hardware. Details on the new database format
can be found on the Developer Network website at the Process API Changes for Cb Response 6.0 page.

The Process Model Object traditionally referred to a single “segment” of events in the Cb Response database. In
Cb Response versions prior to 6.0, a single segment will include up to 10,000 individual endpoint events, enough to
handle over 95% of the typical event activity for a given process. Therefore, even though a Process Model Object
technically refers to a single segment in a process, since most processes had less than 10,000 events and therefore were
only comprised of a single segment, this distinction wasn’t necessary.

However, now that processes are split across many segments, a better way of handling this is necessary. Therefore, Cb
Response 6.0 introduces the new .group_by() method. This method is new in cbapi 1.1.0 and is part of five new
query filters available when communicating with a Cb Response 6.1 server. These filters are accessible via methods
on the Process Query object. These new methods are:

• .group_by() - Group the result set by a field in the response. Typically you will want to group by id, which
will ensure that the result set only has one result per process rather than one result per event segment. For more
information on processes, process segments, and how segments are stored in Cb Response 6.0, see the Process
API Changes for Cb Response 6.0 page on the Developer Network website.

• .min_last_update() - Only return processes that have events after a given date/time stamp (relative to the
individual sensor’s clock)

• .max_last_update() - Only return processes that have events before a given date/time stamp (relative to
the individual sensor’s clock)

• .min_last_server_update() - Only return processes that have events after a given date/time stamp
(relative to the Cb Response server’s clock)

• .max_last_server_update() - Only return processes that have events before a given date/time stamp
(relative to the Cb Response server’s clock)

Examples for new Filters

Let’s take a look at an example:

>>> from datetime import datetime, timedelta
>>> yesterday = datetime.utcnow() - timedelta(days=1) # Get "yesterday" in GMT
>>> for proc in c.select(Process).where("process_name:cmd.exe").min_last_
→˓update(yesterday):
... print proc.id, proc.segment
DEBUG:cbapi.connection:HTTP GET /api/v1/process?cb.min_last_update=2017-05-21T18%3A41
→˓%3A58Z&cb.urlver=1&facet=false&q=process_name%3Acmd.exe&rows=100&sort=last_
→˓update+desc&start=0 took 2.164s (response 200)
00000001-0000-0e48-01d2-c2a397f4cfe0 1495465643405
00000001-0000-0e48-01d2-c2a397f4cfe0 1495465407157
00000001-0000-0e48-01d2-c2a397f4cfe0 1495463680155

(continues on next page)

32 Chapter 4. User Guide

https://developer.carbonblack.com/reference/enterprise-response/6.1/process-api-changes/
https://developer.carbonblack.com/reference/enterprise-response/6.1/process-api-changes/
https://developer.carbonblack.com/reference/enterprise-response/6.1/process-api-changes/

cbapi Documentation, Release 1.3.6

(continued from previous page)

00000001-0000-0e48-01d2-c2a397f4cfe0 1495463807694
00000001-0000-0e48-01d2-c2a397f4cfe0 1495463543944
00000001-0000-0e48-01d2-c2a397f4cfe0 1495463176570
00000001-0000-0e48-01d2-c2a397f4cfe0 1495463243492

Notice that the “same” process ID is returned seven times, but with seven different segment IDs. Cb Response will
return every process event segment that matches a given query, in this case, any event segment that contains the process
command name cmd.exe.

That is, however, most likely not what you wanted. Instead, you’d like a list of the unique processes associated with
the command name cmd.exe. Just add the .group_by("id") filter to your query:

>>> for proc in c.select(Process).where("process_name:cmd.exe").min_last_
→˓update(yesterday).group_by("id"):
... print proc.id, proc.segment
DEBUG:cbapi.connection:HTTP GET /api/v1/process?cb.group=id&cb.min_last_update=2017-
→˓05-21T18%3A41%3A58Z&cb.urlver=1&facet=false&q=process_name%3Acmd.exe&rows=100&
→˓sort=last_update+desc&start=0 took 2.163s (response 200)
00000001-0000-0e48-01d2-c2a397f4cfe0 1495465643405

4.7. CbAPI Changelog 33

cbapi Documentation, Release 1.3.6

34 Chapter 4. User Guide

CHAPTER 5

API Documentation

Once you’ve taken a look at the User Guide, read through some of the examples on GitHub, and maybe even written
some code of your own, the API documentation can help you get the most out of cbapi by documenting all of the
methods available to you.

5.1 Cb Response API

This page documents the public interfaces exposed by cbapi when communicating with a Carbon Black Enterprise
Response server.

5.1.1 Main Interface

To use cbapi with Carbon Black Response, you will be using the CbResponseAPI. The CbResponseAPI object then
exposes two main methods to access data on the Carbon Black server: select and create.

class cbapi.response.rest_api.CbResponseAPI(*args, **kwargs)
The main entry point into the Carbon Black Enterprise Response API. Note that calling this will automatically
connect to the Carbon Black server in order to verify connectivity and get the server version.

Parameters

• profile (str) – (optional) Use the credentials in the named profile when connecting to
the Carbon Black server. Uses the profile named ‘default’ when not specified.

• url (str) – (optional, discouraged) Instead of using a credential profile, pass URL and
API token to the constructor.

• token (str) – (optional, discouraged) API token

• ssl_verify (bool) – (optional, discouraged) Enable or disable SSL certificate verifica-
tion

Usage:

35

https://github.com/carbonblack/cbapi-python/tree/master/examples

cbapi Documentation, Release 1.3.6

>>> from cbapi import CbEnterpriseResponseAPI
>>> cb = CbEnterpriseResponseAPI(profile="production")

create(cls, data=None)
Creates a new object.

Parameters cls (class) – The Model class (only some models can be created, for example,
Feed, Notification, . . .)

Returns An empty instance of the Model class

Raises ApiError – if the Model cannot be created

create_new_partition()
Create a new Solr time partition for event storage. Available in Cb Response 6.1 and above. This will force
roll-over current hot partition into warm partition (by renaming it to a time-stamped name) and create a
new hot partition (“writer”).

Returns Nothing if successful.

Raises

• ApiError – if there was an error creating the new partition.

• ServerError – if there was an error creating the new partition.

from_ui(uri)
Retrieve a Carbon Black Enterprise Response object based on URL from the Carbon Black Enterprise
Response web user interface.

For example, calling this function with https://server/#/analyze/
00000001-0000-0554-01d1-3bc4553b8c9f/1 as the uri argument will return a new
:py:class: cbapi.response.models.Process class initialized with the process GUID from the URL.

Parameters uri (str) – Web browser URL from the Cb web interface

Returns the appropriate model object for the URL provided

Raises ApiError – if the URL does not correspond to a recognized model object

info()
Retrieve basic version information from the Carbon Black Enterprise Response server.

Returns Dictionary with information retrieved from the /api/info API route

Return type dict

license_request()
Retrieve license request block from the Carbon Black Enterprise Response server.

Returns License request block

Return type str

select(cls, unique_id=None, *args, **kwargs)
Prepares a query against the Carbon Black data store.

Parameters

• cls (class) – The Model class (for example, Computer, Process, Binary, FileInstance)
to query

• unique_id – (optional) The unique id of the object to retrieve, to retrieve a single object
by ID

36 Chapter 5. API Documentation

cbapi Documentation, Release 1.3.6

Returns An instance of the Model class if a unique_id is provided, otherwise a Query object

update_license(license_block)
Upload new license to the Carbon Black Enterprise Response server.

Parameters license_block (str) – Licence block provided by Carbon Black support

Raises ServerError – if the license is not accepted by the Carbon Black server

5.1.2 Queries

class cbapi.response.query.Query(doc_class, cb, query=None, raw_query=None)
Represents a prepared query to the Carbon Black Enterprise Response server.

This object is returned as part of a CbEnterpriseResponseAPI.select() operation on Process and
Binary objects from the Carbon Black Enterprise Response server. You should not have to create this class
yourself.

The query is not executed on the server until it’s accessed, either as an iterator (where it will generate values on
demand as they’re requested) or as a list (where it will retrieve the entire result set and save to a list). You can
also call the Python built-in len() on this object to retrieve the total number of items matching the query.

The syntax for query :py:meth:where and :py:meth:sort methods can be found in the Query Reference posted on
the Carbon Black Developer Network website.

Examples:

>>> cb = CbEnterpriseResponseAPI()
>>> query = cb.select(Process) # returns a Query object
→˓matching all Processes
>>> query = query.where("process_name:notepad.exe") # add a filter to this Query
>>> query = query.sort("last_update desc") # sort by last update time,
→˓most recent first
>>> for proc in query: # uses the iterator to
→˓retrieve all results
>>> print("{0} {1}".format(proc.username, proc.hostname))
>>> processes = query[:10] # retrieve the first ten
→˓results
>>> len(query) # retrieve the total count

Notes:

• The slicing operator only supports start and end parameters, but not step. [1:-1] is legal, but
[1:2:-1] is not.

• You can chain where clauses together to create AND queries; only objects that match all where
clauses will be returned.

and_(new_query)
Add a filter to this query. Equivalent to calling where() on this object.

Parameters new_query (str) – Query string - see the Query Reference.

Returns Query object

Return type Query

facets(*args)
Retrieve a dictionary with the facets for this query.

Parameters args – Any number of fields to use as facets

5.1. Cb Response API 37

http://developer.carbonblack.com/resources/query_overview.pdf
http://developer.carbonblack.com/resources/query_overview.pdf

cbapi Documentation, Release 1.3.6

Returns Facet data

Return type dict

sort(new_sort)
Set the sort order for this query.

Parameters new_sort (str) – New sort order - see the Query Reference.

Returns Query object

Return type Query

where(new_query)
Add a filter to this query.

Parameters new_query (str) – Query string - see the Query Reference.

Returns Query object

Return type Query

class cbapi.response.models.ProcessQuery(doc_class, cb, query=None, raw_query=None)

group_by(field_name)
Set the group-by field name for this query. Typically, you will want to set this to ‘id’ if you only want one
result per process.

This method is only available for Cb Response servers 6.0 and above. Calling this on a Query object
connected to a Cb Response 5.x server will simply result in a no-op.

Parameters field_name (str) – Field name to group the result set by.

Returns Query object

Return type ProcessQuery

max_last_server_update(v)
Set the maximum last update time (relative to server) for this query. The timestamp can be expressed either
as a datetime like object or as an ISO 8601 string formatted timestamp such as 2017-04-29T04:21:18Z.
If a datetime like object is provided, it is assumed to be in GMT time zone.

This option will limit the number of Solr cores that need to be searched for events that match the query.

This method is only available for Cb Response servers 6.0 and above. Calling this on a Query object
connected to a Cb Response 5.x server will simply result in a no-op.

Parameters v (str) – Timestamp (either string or datetime object).

Returns Query object

Return type ProcessQuery

max_last_update(v)
Set the maximum last update time (relative to sensor) for this query. The timestamp can be expressed either
as a datetime like object or as an ISO 8601 string formatted timestamp such as 2017-04-29T04:21:18Z.
If a datetime like object is provided, it is assumed to be in GMT time zone.

This option will limit the number of Solr cores that need to be searched for events that match the query.

This method is only available for Cb Response servers 6.0 and above. Calling this on a Query object
connected to a Cb Response 5.x server will simply result in a no-op.

Parameters v (str) – Timestamp (either string or datetime object).

Returns Query object

38 Chapter 5. API Documentation

http://developer.carbonblack.com/resources/query_overview.pdf
http://developer.carbonblack.com/resources/query_overview.pdf

cbapi Documentation, Release 1.3.6

Return type ProcessQuery

min_last_server_update(v)
Set the minimum last update time (relative to server) for this query. The timestamp can be expressed either
as a datetime like object or as an ISO 8601 string formatted timestamp such as 2017-04-29T04:21:18Z.
If a datetime like object is provided, it is assumed to be in GMT time zone.

This option will limit the number of Solr cores that need to be searched for events that match the query.

This method is only available for Cb Response servers 6.0 and above. Calling this on a Query object
connected to a Cb Response 5.x server will simply result in a no-op.

Parameters v (str) – Timestamp (either string or datetime object).

Returns Query object

Return type ProcessQuery

min_last_update(v)
Set the minimum last update time (relative to sensor) for this query. The timestamp can be expressed either
as a datetime like object or as an ISO 8601 string formatted timestamp such as 2017-04-29T04:21:18Z.
If a datetime like object is provided, it is assumed to be in GMT time zone.

This option will limit the number of Solr cores that need to be searched for events that match the query.

This method is only available for Cb Response servers 6.0 and above. Calling this on a Query object
connected to a Cb Response 5.x server will simply result in a no-op.

Parameters v (str) – Timestamp (either string or datetime object).

Returns Query object

Return type ProcessQuery

use_comprehensive_search()
Set the comprehensive_search flag on the Process query.

Returns new Query object

Return type ProcessQuery

class cbapi.response.models.ThreatReportQuery(doc_class, cb, query=None,
raw_query=None)

class cbapi.response.models.AlertQuery(doc_class, cb, query=None, raw_query=None)

5.1.3 Models

class cbapi.response.models.Process(cb, procguid, segment=None, initial_data=None,
force_init=False, suppressed_process=False)

all_events
Returns a list of all events associated with this process across all segments, sorted by timestamp

Returns list of CbEvent objects

all_events_segment
Returns a list of all events associated with this process segment, sorted by timestamp

Returns list of CbEvent objects

binary
Joins this attribute with the Binary object associated with this Process object

5.1. Cb Response API 39

cbapi Documentation, Release 1.3.6

Example

>>> process_obj = c.select(Process).where('process_name:svch0st.exe')[0]
>>> binary_obj = process_obj.binary
>>> print(binary_obj.signed)
False

childprocs
Generator that returns CbChildProcEvent objects associated with this process

children
Generator that returns CbChildProcEvent objects associated with this process

cmdline

Returns Returns the command line of the process

Return type string

comms_ip
Returns ascii representation of the ip address used to communicate with the Cb Response Server

crossprocs
Generator that returns CbCrossProcEvent objects associated with this process

depth
Returns the depth of this process from the “root” system process

Returns integer representing the depth of the process (0 is the root system process). To prevent
infinite recursion, a maximum depth of 500 processes is enforced.

end
Returns the end time of the process (based on the last event received). If the process has not yet exited,
“end” will return None.

Returns datetime object of the last event received for the process, if it has terminated. Otherwise,
None.

filemods
Generator that returns CbFileModEvent objects associated with this process

find_file_writes(filename)
Returns a list of file writes with the specified filename

Parameters filename (str) – filename to match on file writes

Returns Returns a list of file writes with the specified filename

Return type list

interface_ip
Returns ascii representation of the ip address of the interface used to communicate with the Cb Response
server. If using NAT, this will be the “internal” IP address of the sensor.

last_server_update
Returns a pretty version of when this process last updated

last_update
Returns a pretty version of when this process last updated

max_last_server_update
Returns a pretty version of the latest event in this process segment

40 Chapter 5. API Documentation

cbapi Documentation, Release 1.3.6

max_last_update
Returns a pretty version of the latest event in this process segment

min_last_server_update
Returns a pretty version of the earliest event in this process segment

min_last_update
Returns a pretty version of the earliest event in this process segment

modloads
Generator that returns :py:class:CbModLoadEvent associated with this process

netconns
Generator that returns CbNetConnEvent objects associated with this process

parent
Returns the parent Process object if one exists

refresh()
Refresh the object from the Carbon Black server.

regmods
Generator that returns CbRegModEvent objects associated with this process

sensor
Joins this attribute with the Sensor object associated with this Process object

Example

>>> process_obj = c.select(Process).where('process_name:svch0st.exe')[0]
>>> sensor_obj = process.sensor
>>> print(sensor_obj.computer_dns_name)
hyperv-win7-x86

start
Returns the start time of the process

unsigned_modloads
Returns all unsigned module loads. This is useful to filter out all Microsoft signed DLLs

username
Returns the username of the owner of this process

walk_children(callback, max_depth=0, depth=0)
Walk down the execution chain while calling the specified callback function at each depth.

Example

>>> def proc_callback(parent_proc, depth):
... print(parent_proc.cmdline, depth)
>>>
>>> process = c.select(Process).where('process_name:svch0st.exe')[0]
>>> process.walk_children(proc_callback, depth=2)
(u'cmd.exe \c ipconfig', 2)
(u'cmd.exe \\c ipconfig', 2)
(u'cmd.exe /c ipconfig', 2)
(u'ipconfig', 3)
(u'cmd.exe /c ipconfig.exe /all', 2)
(u'cmd.exe \c ipconfig', 2)
(u'cmd.exe \\c ipconfig', 2)
(u'cmd.exe /c ipconfig', 2)

(continues on next page)

5.1. Cb Response API 41

cbapi Documentation, Release 1.3.6

(continued from previous page)

(u'ipconfig', 3)
(u'cmd.exe /c ipconfig.exe /all', 2)

Parameters

• callback (func) – Callback function used for execution at each depth. This function
is executed with the parent process object and depth as parameters.

• max_depth (int) – Max number of iterations down the execution chain.

• depth (int) – Number of iterations down the execution chain

Returns None

walk_parents(callback, max_depth=0, depth=0)
Walk up the execution chain while calling the specified callback function at each depth.

Example

>>> def proc_callback(parent_proc, depth):
... print(parent_proc.cmdline, depth)
>>>
>>> process = c.select(Process).where('process_name:ipconfig.exe')[0]
>>> process.walk_parents(proc_callback)
(u'cmd.exe /c ipconfig.exe', 0)
(u'c:\windows\carbonblack\cb.exe', 1)
(u'C:\Windows\system32\services.exe', 2)
(u'wininit.exe', 3)
(u'\SystemRoot\System32\smss.exe 00000000 00000040 ', 4)
(u'\SystemRoot\System32\smss.exe', 5)
(u'', 6)

Parameters

• callback (func) – Callback function used for execution at each depth. This function
is executed with the parent process object and depth as parameters.

• max_depth (int) – Max number of iterations up the execution chain

• depth (int) – Number of iterations up the execution chain.

Returns None

webui_link
Returns the Cb Response Web UI link associated with this process

class cbapi.response.models.Binary(cb, md5sum, initial_data=None, force_init=False)

class FrequencyData
Class containing frequency information about a binary

Parameters

• computer_count (int) – Number of endpoints this binary resides

• process_count (int) – Number of executions

• all_process_count (int) – Number of all process documents

• module_frequency (int) – process_count / all_process_count

42 Chapter 5. API Documentation

cbapi Documentation, Release 1.3.6

class SigningData
Class containing binary signing information

Parameters

• result (str) – Signed or Unsigned

• publisher (str) – Singnature publisher

• issuer (str) – Signature issuer

• subject (str) – Signing subject

• sign_time (str) – Binary signed time

• program_name (str) – Binary program name

class VersionInfo
Class containing versioning information about a binary

Parameters

• file_desc (str) – File description

• file_version (str) – File version

• product_name (str) – Product Name

• product_version (str) – Product version

• company_name (str) – Company Name

• legal_copyright (str) – Copyright

• original_filename (str) – Original File name of this binary

class VirusTotal
Class containing information associated with a Virus Total Score

Parameters

• score (int) – Virus Total score

• link (str) – Virus Total link for this md5

banned
Returns BannedHash object if this Binary’s hash has been whitelisted (Banned), otherwise returns False

digsig_issuer
Returns the Digital Signature Issuer

digsig_prog_name
Returns the Digital Signature Program Name

digsig_publisher
Returns the Digital Signature Publisher

digsig_sign_time
Returns the Digital Signature signing time

digsig_subject
Returns the Digital Signature subject

endpoints
Return a list of endpoints this binary resides

file
Returns a file pointer to this binary

5.1. Cb Response API 43

cbapi Documentation, Release 1.3.6

Example

>>> process_obj = c.select(Process).where("process_name:svch0st.exe").first()
>>> binary_obj = process_obj.binary
>>> print(binary_obj.file.read(2))
MZ

frequency
Returns FrequencyData information about the binary.

Example

>>> process_obj = c.select(Process).where('process_name:svch0st.exe').first()
>>> binary_obj = process_obj.binary
>>> print(binary_obj.frequency)
FrequencyData(computer_count=1, process_count=5, all_process_count=4429,
→˓module_frequency=0.001128923007450892)

icon
Returns the raw icon of this Binary. This data is not encoded.

is_64bit
Returns True if the Binary is an AMD64 or x64 (64-bit) Executable

is_executable_image
Returns True if the Binary is executable

observed_filenames
Returns a list of all observed file names associated with this Binary

signed
Returns True if the binary is signed.

signing_data
Returns SigningData object which contains: Digital Signature Result, Digital Signature publisher,
Issuer, Subject, Signing Time, Program Name

size
Returns the size of the Binary

version_info
Returns a VersionInfo object containing detailed information: File Descritpion, File Version, Product
Name, Product Version, Company Name, Legal Copyright, and Original FileName

virustotal
Returns a VirusTotal object containing detailed Virus Total information about this binary.

webui_link
Returns the Cb Response Web UI link associated with this Binary object

class cbapi.response.models.Sensor(*args, **kwargs)
Represents a Sensor object in the Carbon Black server.

class NetworkAdapter(macaddr, ipaddr)

ipaddr
Alias for field number 1

macaddr
Alias for field number 0

44 Chapter 5. API Documentation

cbapi Documentation, Release 1.3.6

activity_stats
Returns a list of activity statistics from the associated Cb Response Sensor

dns_name
Returns the DNS name associated with this sensor object. This is the same as ‘computer_dns_name’.

flush_events()
Performs a flush of events for this Cb Response Sensor

Warning This may cause a significant amount of network traffic from this sensor to the Cb
Response Server

group

Getter

Returns the sensor’s group id.

Setter

Allows access to set the sensor’s group id

hostname
Returns the hostname associated with this sensor object. This is the same as ‘computer_name’

isolate(timeout=None)
Turn on network isolation for this Cb Response Sensor.

This function will block and only return when the isolation is complete, or if a timeout is reached. By
default, there is no timeout. You can specify a timeout period (in seconds) in the “timeout” parameter
to this function. If a timeout is specified and reached before the sensor is confirmed isolated, then this
function will throw a TimeoutError.

Returns True if sensor is isolated

Raises TimeoutError – if sensor does not isolate before timeout is reached

lr_session()
Retrieve a Live Response session object for this Sensor.

Returns Live Response session object

Return type cbapi.live_response_api.LiveResponseSession

Raises ApiError – if there is an error establishing a Live Response session for this Sensor

network_interfaces
Returns a list of networks adapters on the sensor

os
Returns the operating system display string of the sensor

queued_stats
Returns a list of status and size of the queued event logs from the associated Cb Response Sensor

Example

>>> sensor_obj = c.select(Sensor).where("ip:192.168").first()
>>> pprint.pprint(sensor_obj.queued_stats)
[{u'id': u'355509',
u'num_eventlog_bytes': u'0',
u'num_eventlogs': u'0',
u'num_storefile_bytes': u'0',
u'num_storefiles': 0,

(continues on next page)

5.1. Cb Response API 45

cbapi Documentation, Release 1.3.6

(continued from previous page)

u'sensor_id': 1,
u'timestamp': u'2016-10-17 19:08:09.645294-05:00'}]

resource_status
Returns a list of memory statistics used by the Cb Response Sensor

restart_sensor()
Restarts the Carbon Black sensor (not the underlying endpoint operating system).

This simply sets the flag to ask the sensor to restart the next time it checks into the Cb Response server, it
does not wait for the sensor to restart.

sid
Security Identifier being used by the Cb Response Sensor

unisolate(timeout=None)
Turn off network isolation for this Cb Response Sensor.

This function will block and only return when the isolation is removed, or if a timeout is reached. By
default, there is no timeout. You can specify a timeout period (in seconds) in the “timeout” parameter to
this function. If a timeout is specified and reached before the sensor is confirmed unisolated, then this
function will throw a TimeoutError.

Returns True if sensor is unisolated

Raises TimeoutError – if sensor does not unisolate before timeout is reached

webui_link
Returns the Cb Response Web UI link associated with this Sensor

class cbapi.response.models.Feed(cb, model_unique_id=None, initial_data=None,
force_init=False, full_doc=False)

Represents a Feed object in the Carbon Black server.

actions

Returns Returns all FeedAction objects associated with this feed

Return type response.rest_api.Query

search_binaries(min_score=None, max_score=None)
Perform a Binary search within this feed that satisfies min_score and max_score :param min_score: min-
imum feed score :param max_score: maximum feed score :return: Returns a response.rest_api.
Query object within the appropriate search parameters for binaries :rtype: response.rest_api.
Query

search_processes(min_score=None, max_score=None)
Perform a Process search within this feed that satisfies min_score and max_score

Parameters

• min_score – minimum feed score

• max_score – maximum feed score

Returns Returns a response.rest_api.Query object with the appropriate search param-
eters for processes

Return type response.rest_api.Query

class cbapi.response.models.BannedHash(cb, model_unique_id=None, initial_data=None,
force_init=False, full_doc=False)

Represents a BannedHash object in the Carbon Black server.

46 Chapter 5. API Documentation

cbapi Documentation, Release 1.3.6

binary
Joins this attribute with the Binary object associated with this Banned Hash object

class cbapi.response.models.Watchlist(*args, **kwargs)
Represents a Watchlist object in the Carbon Black server.

Variables

• search_query – URL encoded search query associated with this watchlist.

• index_type – Index to search for this watchlist. Must be either ‘events’ (Processes) or
‘modules’ (Binaries)

facets
Returns facets from the search associated with the watchlist query

Returns dictionary of facets as keys

Return type dict

query

Getter

Returns the query associated with this watchlist.

Setter

Allows access to set the query associated with this watchlist

search()
Creates a search based on the watchlist’s search parameter

Returns a Process response.rest_api.Query or Binary response.rest_api.
Query

Return type response.rest_api.Query

class cbapi.response.models.Alert(cb, alert_id, initial_data=None)
Represents a Alert object in the Carbon Black server.

5.1.4 Live Response

class cbapi.live_response_api.CbLRSessionBase(cblr_manager, session_id, sensor_id, ses-
sion_data=None)

File Operations

CbLRSessionBase.get_file(file_name)
Retrieve contents of the specified file name

Parameters file_name (str) – Name of the file

Returns Content of the specified file name

Return type str

CbLRSessionBase.delete_file(filename)
Delete the specified file name

Parameters filename (str) – Name of the file

Returns None

5.1. Cb Response API 47

cbapi Documentation, Release 1.3.6

CbLRSessionBase.put_file(infp, remote_filename)
Create a new file on the remote endpoint with the specified data

Example

>>> with c.select(Sensor, 1).lr_session() as lr_session:
... lr_session.put_file('File Data', new_remote_file)

Parameters

• infp (str) – File data to put on the remote endpoint

• remote_filename (str) – File name to create on the remote endpoint

Returns None

CbLRSessionBase.list_directory(dir_name)
List the contents of a directory

Example

>>> with c.select(Sensor, 1).lr_session() as lr_session:
... pprint.pprint(lr_session.list_directory('C:\\temp\\'))
[{u'attributes': [u'DIRECTORY'],
u'create_time': 1471897244,
u'filename': u'.',
u'last_access_time': 1476390670,
u'last_write_time': 1476390670,
u'size': 0},

{u'attributes': [u'DIRECTORY'],
u'create_time': 1471897244,
u'filename': u'..',
u'last_access_time': 1476390670,
u'last_write_time': 1476390670,
u'size': 0},

{u'attributes': [u'ARCHIVE'],
u'create_time': 1476390668,
u'filename': u'test.txt',
u'last_access_time': 1476390668,
u'last_write_time': 1476390668,
u'size': 0}]

Parameters dir_name (str) – Directory to list. This parameter should end with ‘’

Returns Returns a directory listing

Return type list

CbLRSessionBase.create_directory(dir_name)
Create a directory on the remote endpoint

Parameters dir_name (str) – New directory name

Returns None

CbLRSessionBase.walk(top, topdown=True, onerror=None, followlinks=False)
Perform a full directory walk with recursion into subdirectories

Example

48 Chapter 5. API Documentation

cbapi Documentation, Release 1.3.6

>>> with c.select(Sensor, 1).lr_session() as lr_session:
... for entry in lr_session.walk(directory_name):
... print(entry)
('C:\temp\', [u'dir1', u'dir2'], [u'file1.txt'])

Parameters

• top (str) – Directory to recurse

• topdown (bool) – if True, start output from top level directory

• onerror (bool) – Callback if an error occurs. This function is called with one argument
(the exception that occurred)

• followlinks (bool) – Follow symbolic links

Returns Returns output in the follow tuple format: (Directory Name, [dirnames], [filenames])

Return type tuple

Registry Operations

CbLRSessionBase.get_registry_value(regkey)
Returns the associated value of the specified registry key

Example

>>> with c.select(Sensor, 1).lr_session() as lr_session:
>>> pprint.pprint(lr_session.get_registry_value(
→˓'HKLM\SYSTEM\CurrentControlSet\services\ACPI\Start'))
{u'value_data': 0, u'value_name': u'Start', u'value_type': u'REG_DWORD'}

Parameters regkey (str) – The registry key to retrieve

Returns Returns a dictionary with keys of: value_data, value_name, value_type

Return type dict

CbLRSessionBase.set_registry_value(regkey, value, overwrite=True, value_type=None)
Set a registry value of the specified registry key

Example

>>> with c.select(Sensor, 1).lr_session() as lr_session:
... lr_session.set_registry_value(
→˓'HKLM\\SYSTEM\\CurrentControlSet\\services\\ACPI\\testvalue', 1)

Parameters

• regkey (str) – They registry key to set

• value (obj) – The value data

• overwrite (bool) – Overwrite value if True

• value_type (str) – The type of value. Examples: REG_DWORD, REG_MULTI_SZ,
REG_SZ

Returns None

5.1. Cb Response API 49

cbapi Documentation, Release 1.3.6

CbLRSessionBase.delete_registry_value(regkey)
Delete a registry value

Parameters regkey (str) – the registry value to delete

Returns None

CbLRSessionBase.create_registry_key(regkey)
Create a new registry

Parameters regkey (str) – The registry key to create

Returns None

CbLRSessionBase.delete_registry_key(regkey)
Delete a registry key

Parameters regkey (str) – The registry key to delete

Returns None

CbLRSessionBase.list_registry_keys_and_values(regkey)
Enumerate subkeys and values of the specified registry key.

Example

>>> with c.select(Sensor, 1).lr_session() as lr_session:
>>> pprint.pprint(lr_session.list_registry_keys_and_values(
→˓'HKLM\SYSTEM\CurrentControlSet\services\ACPI'))
{'sub_keys': [u'Parameters', u'Enum'],
'values': [{u'value_data': 0,

u'value_name': u'Start',
u'value_type': u'REG_DWORD'},

{u'value_data': 1,
u'value_name': u'Type',
u'value_type': u'REG_DWORD'},

{u'value_data': 3,
u'value_name': u'ErrorControl',
u'value_type': u'REG_DWORD'},

{u'value_data': u'system32\drivers\ACPI.sys',
u'value_name': u'ImagePath',
u'value_type': u'REG_EXPAND_SZ'},

{u'value_data': u'Microsoft ACPI Driver',
u'value_name': u'DisplayName',
u'value_type': u'REG_SZ'},

{u'value_data': u'Boot Bus Extender',
u'value_name': u'Group',
u'value_type': u'REG_SZ'},

{u'value_data': u'acpi.inf_x86_neutral_ddd3c514822f1b21',
u'value_name': u'DriverPackageId',
u'value_type': u'REG_SZ'},

{u'value_data': 1,
u'value_name': u'Tag',
u'value_type': u'REG_DWORD'}]}

Parameters regkey (str) – The registry key to enumerate

Returns returns a dictionary with 2 keys (sub_keys and values)

Return type dict

50 Chapter 5. API Documentation

cbapi Documentation, Release 1.3.6

CbLRSessionBase.list_registry_keys(regkey)
Enumerate all registry values from the specified registry key.

Parameters regkey – The registry key to enumearte

Returns returns a list of values

Return type list

Process Operations

CbLRSessionBase.kill_process(pid)
Terminate a process on the remote endpoint

Parameters pid – Process ID to terminate

Returns True if success, False if failure

Return type bool

CbLRSessionBase.create_process(command_string, wait_for_output=True, re-
mote_output_file_name=None, working_directory=None,
wait_timeout=30, wait_for_completion=True)

Create a new process with the specified command string.

Example

>>> with c.select(Sensor, 1).lr_session() as lr_session:
... print(lr_session.create_process(r'cmd.exe /c "ping.exe 192.168.1.1"'))
Pinging 192.168.1.1 with 32 bytes of data:
Reply from 192.168.1.1: bytes=32 time<1ms TTL=64

Parameters

• command_string (str) – command string used for the create process operation

• wait_for_output (bool) – Block on output from the new process (execute in fore-
ground). This will also set wait_for_completion (below).

• remote_output_file_name (str) – The remote output file name used for process
output

• working_directory (str) – The working directory of the create process operation

• wait_timeout (int) – Time out used for this live response command

• wait_for_completion (bool) – Wait until the process is completed before returning

Returns returns the output of the command string

Return type str

CbLRSessionBase.list_processes()
List currently running processes

Example

>>> with c.select(Sensor, 1).lr_session() as lr_session:
... print(lr_session.list_processes()[0])
{u'command_line': u'',
u'create_time': 1476260500,
u'parent': 0,

(continues on next page)

5.1. Cb Response API 51

cbapi Documentation, Release 1.3.6

(continued from previous page)

u'parent_guid': u'00000001-0000-0000-0000-000000000000',
u'path': u'',
u'pid': 4,
u'proc_guid': u'00000001-0000-0004-01d2-2461a85e4546',
u'sid': u's-1-5-18',
u'username': u'NT AUTHORITY\SYSTEM'}

Returns returns a list of running processes

Return type list

5.2 Cb Protection API

This page documents the public interfaces exposed by cbapi when communicating with a Carbon Black Enterprise
Protection server.

5.2.1 Main Interface

To use cbapi with Carbon Black Protection, you will be using the CbProtectionAPI. The CbProtectionAPI object then
exposes two main methods to select data on the Carbon Black server:

class cbapi.protection.rest_api.CbProtectionAPI(*args, **kwargs)
The main entry point into the Carbon Black Enterprise Protection API.

Parameters profile (str) – (optional) Use the credentials in the named profile when connecting
to the Carbon Black server. Uses the profile named ‘default’ when not specified.

Usage:

>>> from cbapi import CbEnterpriseProtectionAPI
>>> cb = CbEnterpriseProtectionAPI(profile="production")

create(cls, data=None)
Creates a new object.

Parameters cls (class) – The Model class (only some models can be created, for example,
Feed, Notification, . . .)

Returns An empty instance of the Model class

Raises ApiError – if the Model cannot be created

select(cls, unique_id=None, *args, **kwargs)
Prepares a query against the Carbon Black data store.

Parameters

• cls (class) – The Model class (for example, Computer, Process, Binary, FileInstance)
to query

• unique_id – (optional) The unique id of the object to retrieve, to retrieve a single object
by ID

Returns An instance of the Model class if a unique_id is provided, otherwise a Query object

52 Chapter 5. API Documentation

cbapi Documentation, Release 1.3.6

5.2.2 Queries

class cbapi.protection.rest_api.Query(doc_class, cb, query=None)
Represents a prepared query to the Carbon Black Enterprise Protection server.

This object is returned as part of a CbEnterpriseProtectionAPI.select() operation on models re-
quested from the Carbon Black Enterprise Protection server. You should not have to create this class yourself.

The query is not executed on the server until it’s accessed, either as an iterator (where it will generate values on
demand as they’re requested) or as a list (where it will retrieve the entire result set and save to a list). You can
also call the Python built-in len() on this object to retrieve the total number of items matching the query.

The syntax for query :py:meth:where and :py:meth:sort methods can be found in the Enterprise Protection API
reference posted on the Carbon Black Developer Network website.

Examples:

>>> from cbapi.protection import CbEnterpriseProtectionAPI, Computer
>>> cb = CbEnterpriseProtectionAPI()
>>> query = cb.select(Computer) # returns a Query object
→˓matching all Computers
>>> query = query.where("ipAddress:10.201.2.*") # add a filter to this Query
>>> query = query.sort("processorSpeed DESC") # sort by computer processor
→˓speed, descending
>>> for comp in query: # uses the iterator to
→˓retrieve all results
>>> print(comp.name)
>>> comps = query[:10] # retrieve the first ten
→˓results
>>> len(query) # retrieve the total count

Notes:

• The slicing operator only supports start and end parameters, but not step. [1:-1] is legal, but
[1:2:-1] is not.

• You can chain where clauses together to create AND queries; only objects that match all where
clauses will be returned.

and_(q)
Add a filter to this query. Equivalent to calling where() on this object.

Parameters q (str) – Query string - see the Enterprise Protection API reference.

Returns Query object

Return type Query

sort(new_sort)
Set the sort order for this query.

Parameters new_sort (str) – Sort order - see the Enterprise Protection API reference.

Returns Query object

Return type Query

where(q)
Add a filter to this query.

Parameters q (str) – Query string - see the Enterprise Protection API reference.

Returns Query object

5.2. Cb Protection API 53

https://developer.carbonblack.com/reference/enterprise-protection/8.0/rest-api/
https://developer.carbonblack.com/reference/enterprise-protection/8.0/rest-api/
https://developer.carbonblack.com/reference/enterprise-protection/8.0/rest-api/
https://developer.carbonblack.com/reference/enterprise-protection/8.0/rest-api/
https://developer.carbonblack.com/reference/enterprise-protection/8.0/rest-api/

cbapi Documentation, Release 1.3.6

Return type Query

5.2.3 Models

class cbapi.protection.models.ApprovalRequest(cb, model_unique_id, initial_data=None)

ResolutionApproved = 2

ResolutionInstaller = 4

ResolutionNotResolved = 0

ResolutionOther = 7

ResolutionPublisher = 6

ResolutionRejected = 1

ResolutionRuleChange = 3

ResolutionUpdater = 5

StatusClosed = 3

StatusOpen = 2

StatusSubmitted = 1

computer

fileCatalog

installerFileCatalog

processFileCatalog

urlobject = '/api/bit9platform/v1/approvalRequest'

class cbapi.protection.models.Certificate(cb, model_unique_id, initial_data=None)

StateApproved = 2

StateBanned = 3

StateMixed = 4

StateUnapproved = 1

firstSeenComputer

parent

publisher

urlobject = '/api/bit9platform/v1/certificate'

class cbapi.protection.models.Computer(cb, model_unique_id, initial_data=None)
Represents a Computer object in the Carbon Black server.

fileInstances

policy

resetCLIPassword()

templateComputer

54 Chapter 5. API Documentation

cbapi Documentation, Release 1.3.6

urlobject = '/api/bit9platform/v1/computer'

class cbapi.protection.models.Connector(cb, model_unique_id=None, initial_data=None,
force_init=False, full_doc=False)

Represents a Connector object in the Carbon Black server.

Variables

• id – Unique connector Id

• enabled – True if connector is enabled

• name – Name of the connector. Note that only non-internal connectors can be renamed

• connectorVersion – Version of this connector

• analysisEnabled – True if analysis component of this connector is enabled

• analysisName – Name for analysis component of the connector (can be same as the
name field)

• analysisTargets – Array of possible analysis targets. Analysis targets are required
when creating new fileAnalysis. They usualy represent different OS and configurations and
are available only for some internal connectors.

• isInternal – True if this is internal connector

• canAnalyze – True if this connector can analyze files

analysisEnabled = None

analysisName = None

analysisTargets = []

canAnalyze = None

connectorVersion = None

enabled = None

id = None

isInternal = None

name = None

pendingAnalyses

urlobject = '/api/bit9platform/v1/connector'

class cbapi.protection.models.DriftReport(cb, model_unique_id=None, ini-
tial_data=None, force_init=False,
full_doc=False)

Represents a DriftReport object in the Carbon Black server.

urlobject = '/api/bit9platform/v1/driftReport'

class cbapi.protection.models.DriftReportContents(cb, model_unique_id=None, ini-
tial_data=None, force_init=False,
full_doc=False)

Represents a DriftReportContents object in the Carbon Black server.

urlobject = '/api/bit9platform/v1/driftReportContents'

class cbapi.protection.models.EnforcementLevel

5.2. Cb Protection API 55

cbapi Documentation, Release 1.3.6

LevelHigh = 20

LevelLow = 40

LevelMedium = 30

LevelNone = 80

class cbapi.protection.models.Event(cb, model_unique_id, initial_data=None)
Represents a Event object in the Carbon Black server.

fileCatalog

urlobject = '/api/bit9platform/v1/event'

class cbapi.protection.models.FileAnalysis(cb, model_unique_id, initial_data=None)

urlobject = '/api/bit9platform/v1/fileAnalysis'

class cbapi.protection.models.FileCatalog(cb, model_unique_id, initial_data=None)
Represents a FileCatalog object in the Carbon Black server.

certificate

computer

fileHash

publisher

urlobject = '/api/bit9platform/v1/fileCatalog'

class cbapi.protection.models.FileInstance(cb, model_unique_id, initial_data=None)
Represents a FileInstance object in the Carbon Black server.

computer

fileCatalog

urlobject = '/api/bit9platform/v1/fileInstance'

class cbapi.protection.models.FileInstanceDeleted(cb, model_unique_id, ini-
tial_data=None)

urlobject = '/api/bit9platform/v1/fileInstanceDeleted'

class cbapi.protection.models.FileInstanceGroup(cb, model_unique_id, ini-
tial_data=None)

urlobject = '/api/bit9platform/v1/fileInstanceGroup'

class cbapi.protection.models.FileRule(cb, model_unique_id=None, initial_data=None,
force_init=False, full_doc=False)

Represents a FileRule object in the Carbon Black server.

Variables

• hash – Hash associated with this rule. Note that hash will be available only if rule was
created through md5 or sha-1 hash. If rule was created through fileName, fileCatalogId or
sha-256 hash that exists in the catalog, this field will be empty.

• fileCatalogId – Id of fileCatalog entry associated with this fileRule. Can be null if file
hasn’t been seen on any endpoints yet. This is foreign key and can be expanded to expose
fields from the related fileCatalog object

56 Chapter 5. API Documentation

cbapi Documentation, Release 1.3.6

• forceNotInstaller – True if this file is forced to act as ‘not installer’, even if product
detected it as installer

• modifiedBy – User that last modified this object

• dateCreated – Date/time when this rule was created (UTC)

• visible – If rule should be visible in the UI or not

• name – Name of this rule.

• unifiedFlag – Local override flag for unified rule (0 - if rule is not unified, 1 - no
override allowed, 3 - local override allowed)

• fileState – File state for this rule. Can be one of: 1=Unapproved 2=Approved
3=Banned

• modifiedByUserId – Id of user that last modified this object

• sourceId – Id of source of this rule. Can be event rule id or trusted directory id

• reportOnly – True if this has a report-only ban

• sourceType – Mechanism that created this rule. Can be one of: 1 = Manual 2 = Trusted
Directory 3 = Reputation 4 = Imported 5 = External (API) 6 = Event Rule 7 = Application
Template 8 = Unified Management

• policyIds – List of IDs of policies where this rule applies. Value will be empty if this is
a global rule

• origIdUnique – Unique GUID of the original rule

• fileRuleType – Text description of file rule type

• idUnique – Unique GUID of this rule

• id – Unique id of this fileRule

• forceInstaller – True if this file is forced to act as installer, even if product detected
it as ‘not installer’

• reputationApprovalsEnabled – True if reputation approvals are enabled for this
file

• version – Version of this file rule

• platformFlags – Set of platform flags where this file rule will be valid. combination of:
1 = Windows 2 = Mac 4 = Linux

• createdBy – User that created this object

• description – Description of this rule.

• dateModified – Date/time when this object was last modified (UTC)

• lazyApproval – This filed is valid only when creating approvals. When set to true, it
will cause approval to be sent to agent only if file is marked as installer or if it blocked on
any agent. This is useful when proactively creating lot of approvals that might or might not
be required, since it is using less resources. Note that, as soone as lazy approval is sent to
agents, this field will changed to ‘false’.

• createdByUserId – Id of user that created this object

• unifiedSource – Unified server name that created this rule

• clVersion – CL version associated with this file rule

5.2. Cb Protection API 57

cbapi Documentation, Release 1.3.6

• fileName – File name associated with this rule. Note that file name will be available only
if rule was created through file name. If rule was created through fileCatalogId or hash, this
field will be empty.

PlatformLinux = 4

PlatformMac = 2

PlatformWindows = 1

SourceTypeApplicationTemplate = 7

SourceTypeEventRule = 6

SourceTypeExternal = 5

SourceTypeImported = 4

SourceTypeManual = 1

SourceTypeReputation = 3

SourceTypeTrustedDirectory = 2

SourceTypeUnifiedManagement = 8

StateApproved = 2

StateBanned = 3

StateUnapproved = 1

clVersion = None

createdBy = None

createdByUser

createdByUserId = None

dateCreated = datetime.datetime(1970, 1, 1, 0, 0, tzinfo=tzlocal())

dateModified = datetime.datetime(1970, 1, 1, 0, 0, tzinfo=tzlocal())

description = None

fileCatalog

fileCatalogId = None

fileName = None

fileRuleType = None

fileState = None

forceInstaller = None

forceNotInstaller = None

hash = None

id = None

idUnique = None

lazyApproval = None

modifiedBy = None

modifiedByUserId = None

58 Chapter 5. API Documentation

cbapi Documentation, Release 1.3.6

name = None

origIdUnique = None

platformFlags = None

policyIds = None

reportOnly = None

reputationApprovalsEnabled = None

sourceId = None

sourceType = None

unifiedFlag = None

unifiedSource = None

urlobject = '/api/bit9platform/v1/fileRule'

version = None

visible = None

class cbapi.protection.models.FileUpload(cb, model_unique_id, initial_data=None)

file

urlobject = '/api/bit9platform/v1/fileUpload'

class cbapi.protection.models.GrantedUserPolicyPermission(cb,
model_unique_id=None,
initial_data=None,
force_init=False,
full_doc=False)

Represents a GrantedUserPolicyPermission object in the Carbon Black server.

urlobject = '/api/bit9platform/v1/grantedUserPolicyPermission'

class cbapi.protection.models.InternalEvent(cb, model_unique_id, initial_data=None)

urlobject = '/api/bit9platform/v1/fileInstance'

class cbapi.protection.models.MeteredExecution(cb, model_unique_id, ini-
tial_data=None)

urlobject = '/api/bit9platform/v1/meteredExecution'

class cbapi.protection.models.Notification(cb, model_unique_id=None, ini-
tial_data=None, force_init=False,
full_doc=False)

Represents a Notification object in the Carbon Black server.

Variables

• connectorId – Id of connector object that sent the notification

• fileAnalysisId – Id of fileAnalysis object associated with the notification. This should
be available if notification came as a result of the file analysis

• analysisResult – Analysis result. Can be one of: 0 = Unknown, 1 = Not malicious, 2
= Potential risk, 3 = Malicious

• time – Date/time of the notification (UTC)

5.2. Cb Protection API 59

cbapi Documentation, Release 1.3.6

ResultClean = 1

ResultMalicious = 3

ResultNotAvailable = 0

ResultPotentialThreat = 2

analysisResult = None

anomaly = None

appliance = None

connectorId = None

destIp = None

destUsername = None

directories = []

externalId = None

externalUrl = None

fileAnalysisId = None

fileName = None

files = []

flags = None

httpHeader = None

malwareName = None

malwareType = None

md5 = None

msgFormat = None

product = None

regKeys = []

severity = None

sha1 = None

sha256 = None

srcHost = None

srcIp = None

srcUsername = None

status = None

targetApp = None

targetOS = None

time = datetime.datetime(1970, 1, 1, 0, 0, tzinfo=tzlocal())

type = None

urlobject = '/api/bit9platform/v1/notification'

60 Chapter 5. API Documentation

cbapi Documentation, Release 1.3.6

version = None

class cbapi.protection.models.Notifier(cb, model_unique_id, initial_data=None)

urlobject = '/api/bit9platform/v1/notifier'

class cbapi.protection.models.PendingAnalysis(cb, model_unique_id, initial_data=None)

ResultClean = 1

ResultMalicious = 3

ResultNotAvailable = 0

ResultPotentialThreat = 2

StatusAnalyzed = 3

StatusCancelled = 5

StatusError = 4

StatusProcessed = 2

StatusScheduled = 0

StatusSubmitted = 1

create_notification(**kwargs)

file

fileCatalog

fileHash

urlobject = '/api/bit9platform/v1/pendingAnalysis'

class cbapi.protection.models.Policy(cb, model_unique_id=None, initial_data=None,
force_init=False, full_doc=False)

Represents a Policy object in the Carbon Black server.

Variables

• automaticApprovalsOnTransition – True if agents in this policy will automati-
cally locally approve files when transitioning into High Enforcement

• dateCreated – Date/time when this rule was created (UTC)

• atEnforcementComputers – Number of computers that are at target enforcement level
in this policy

• disconnectedEnforcementLevel – Target enforcement level for disconnected com-
puters. Can be one of: 20=High (Block Unapproved) 30=Medium (Prompt Unapproved)
40=Low (Monitor Unapproved) 60=None (Visibility) 80=None (Disabled)

• name – Name of this policy.

• packageName – Name of installer package for this policy

• modifiedByUserId – Id of user that last modified this object

• imageUrl – Image logo URL for notifiers in this policy

• customLogo – True if notifiers in this policy use custom logo

• totalComputers – Total number of computers in this policy

5.2. Cb Protection API 61

cbapi Documentation, Release 1.3.6

• hidden – True if this policy is hidden in the UI

• id – Unique id of this policy

• clVersionMax – Max target CL version for agents in this policy

• enforcementLevel – Target enforcement level. Can be one of: 20=High (Block Unap-
proved) 30=Medium (Prompt Unapproved) 40=Low (Monitor Unapproved) 60=None (Vis-
ibility) 80=None (Disabled)

• loadAgentInSafeMode – True if agents in this policy will be loaded when machine is
booted in ‘safe mode’

• helpDeskUrl – Helpdesk URL for notifiers in this policy

• description – Description of this policy.

• reputationEnabled – True if reputation approvals are enabled in this policy

• connectedComputers – Number of connected computers in this policy

• automatic – True if AD mapping is enabled for this policy

• dateModified – Date/time when this object was last modified (UTC)

• createdByUserId – Id of user that created this object

• readOnly – True if this policy is read-only

• fileTrackingEnabled – True if file tracking enabled in this policy

• allowAgentUpgrades – True if agents can be upgraded for this policy

allowAgentUpgrades = None

atEnforcementComputers = None

automatic = None

automaticApprovalsOnTransition = None

clVersionMax = None

connectedComputers = None

createdByUserId = None

customLogo = None

dateCreated = datetime.datetime(1970, 1, 1, 0, 0, tzinfo=tzlocal())

dateModified = datetime.datetime(1970, 1, 1, 0, 0, tzinfo=tzlocal())

description = None

disconnectedEnforcementLevel = None

enforcementLevel = None

fileTrackingEnabled = None

helpDeskUrl = None

hidden = None

id = None

imageUrl = None

loadAgentInSafeMode = None

62 Chapter 5. API Documentation

cbapi Documentation, Release 1.3.6

modifiedByUserId = None

name = None

packageName = None

readOnly = None

reputationEnabled = None

totalComputers = None

urlobject = '/api/bit9platform/v1/policy'

class cbapi.protection.models.Publisher(cb, model_unique_id, initial_data=None)

urlobject = '/api/bit9platform/v1/publisher'

class cbapi.protection.models.PublisherCertificate(cb, model_unique_id=None, ini-
tial_data=None, force_init=False,
full_doc=False)

Represents a PublisherCertificate object in the Carbon Black server.

urlobject = '/api/bit9platform/v1/publisherCertificate'

class cbapi.protection.models.ScriptRule(cb, model_unique_id=None, initial_data=None,
force_init=False, full_doc=False)

Represents a ScriptRule object in the Carbon Black server.

urlobject = '/api/bit9platform/v1/scriptRule'

class cbapi.protection.models.ServerConfig(cb, model_unique_id, initial_data=None)

urlobject = '/api/bit9platform/v1/serverConfig'

class cbapi.protection.models.ServerPerformance(cb, model_unique_id, ini-
tial_data=None)

urlobject = '/api/bit9platform/v1/serverPerformance'

class cbapi.protection.models.TrustedDirectory(cb, model_unique_id=None, ini-
tial_data=None, force_init=False,
full_doc=False)

Represents a TrustedDirectory object in the Carbon Black server.

urlobject = '/api/bit9platform/v1/trustedDirectory'

class cbapi.protection.models.TrustedUser(cb, model_unique_id=None, ini-
tial_data=None, force_init=False,
full_doc=False)

Represents a TrustedUser object in the Carbon Black server.

Variables

• id – Unique id of this trustedUser

• userSid – Id of the user that will be trusted on the endpoint. This field can be user
name, user SID (Security identifier) on Windows platforms or user’s ID on Linux and Mac
platforms

• modifiedBy – User that last modified this object

• dateCreated – Date/time when this object was created (UTC)

5.2. Cb Protection API 63

cbapi Documentation, Release 1.3.6

• name – Name of the user as it will appear on the console. This is not the name that will be
enforced on the endpoint

• modifiedByUserId – Id of user that last modified this object. This is foreign key and
can be expanded to expose fields from the related user object

• createdBy – User that created this object

• description – Description of this rule

• dateModified – Date/time when this object was last modified (UTC)

• createdByUserId – Id of user that created this object. This is foreign key and can be
expanded to expose fields from the related user object

• platformId – Platform where this trustedUser will be valid. it is one of: 1 = Windows,
2 = Mac, 4 = Linux

• clVersion – CL version associated with this trustedUser

clVersion = None

createdBy = None

createdByUserId = None

dateCreated = datetime.datetime(1970, 1, 1, 0, 0, tzinfo=tzlocal())

dateModified = datetime.datetime(1970, 1, 1, 0, 0, tzinfo=tzlocal())

description = None

id = None

modifiedBy = None

modifiedByUserId = None

name = None

platformId = None

urlobject = '/api/bit9platform/v1/trustedUser'

userSid = None

class cbapi.protection.models.Updater(cb, model_unique_id, initial_data=None)

urlobject = '/api/bit9platform/v1/updater'

class cbapi.protection.models.User(cb, model_unique_id=None, initial_data=None,
force_init=False, full_doc=False)

Represents a User object in the Carbon Black server.

Variables

• cellPhone – User’s cell phone

• department – Department this user belongs to

• passwordHash – Hash of user password

• name – Name of the user

• title – Title of this user

• adminComments – Administrator’s comments for this user

• userGroupIds – Comma-separated list of IDs of corresponding userGroup objects

64 Chapter 5. API Documentation

cbapi Documentation, Release 1.3.6

• passwordSalt – Salt used to generate password hash

• unified – True if this user’s token is already connected to a remote unified environment
(token should not be changed)

• salutation – Salutation of this user

• eMailAddress – EMail address of this user

• backupCellPhone – User’s secondary cell phone

• homePhone – User’s home phone

• id – Unique id of this user

• firstName – First name of this user

• backupPager – User’s secondary pager number

• apiToken – API token for this user

• registrationDate – Date this user was first registered (UTC)

• lastName – Last name of this user

• external – True if this is externally generated user (e.g. from AD)

• automatic – True if this user’s roles are assigned automatically through mappings (valid
only for external users)

• enabled – True if this user is enabled

• pager – User’s pager number

• readOnly – True if this user is one of internal users (System or Cb Collective Defense
Cloud Service) or AD user. These users cannot be modified through the API

• comments – Comments for this user

adminComments = None

apiToken = None

automatic = None

backupCellPhone = None

backupPager = None

cellPhone = None

comments = None

department = None

eMailAddress = None

enabled = None

external = None

firstName = None

homePhone = None

id = None

lastName = None

name = None

5.2. Cb Protection API 65

cbapi Documentation, Release 1.3.6

pager = None

passwordHash = None

passwordSalt = None

readOnly = None

registrationDate = datetime.datetime(1970, 1, 1, 0, 0, tzinfo=tzlocal())

salutation = None

title = None

unified = None

urlobject = '/api/bit9platform/v1/user'

userGroupIds = None

class cbapi.protection.models.UserGroup(cb, model_unique_id=None, initial_data=None,
force_init=False, full_doc=False)

Represents a UserGroup object in the Carbon Black server.

Variables

• editable – True if this userGroup is editable

• id – Unique id of this user group

• permissions – Permissions associated with users of this user group as a hexadecimal
string. See https://developer.carbonblack.com/reference/enterprise-protection/8.0/rest-api/
#usergroup for more information.

• modifiedBy – User that last modified this object

• dateCreated – Date/time when this object was created (UTC)

• manualCount – Number of users that belong to this group and have been assigned man-
ually (doesn’t include internal users)

• name – Name of the user group

• modifiedByUserId – Id of user that last modified this object. This is foreign key and
can be expanded to expose fields from the related user object

• createdBy – User that created this object

• description – Description of this user group

• dateModified – Date/time when this object was last modified (UTC)

• enabled – True if this userGroup is enabled

• createdByUserId – Id of user that created this object. This is foreign key and can be
expanded to expose fields from the related user object

• policyIds – List of IDs of policies where this user group applies. Value will be empty if
this is a global user group

• automaticCount – Number of users that belong to this group and have been assigned
through AD rule (doesn’t include internal users)

automaticCount = None

createdBy = None

createdByUserId = None

66 Chapter 5. API Documentation

https://developer.carbonblack.com/reference/enterprise-protection/8.0/rest-api/#usergroup
https://developer.carbonblack.com/reference/enterprise-protection/8.0/rest-api/#usergroup

cbapi Documentation, Release 1.3.6

dateCreated = datetime.datetime(1970, 1, 1, 0, 0, tzinfo=tzlocal())

dateModified = datetime.datetime(1970, 1, 1, 0, 0, tzinfo=tzlocal())

description = None

editable = None

enabled = None

id = None

manualCount = None

modifiedBy = None

modifiedByUserId = None

name = None

permissions = None

policyIds = None

urlobject = '/api/bit9platform/v1/userGroup'

5.3 Cb Defense API

This page documents the public interfaces exposed by cbapi when communicating with a Cb Defense server.

5.3.1 Main Interface

To use cbapi with Carbon Black Defense, you will be using the CbDefenseAPI. The CbDefenseAPI object then
exposes two main methods to select data on the Carbon Black server:

class cbapi.defense.rest_api.CbDefenseAPI(*args, **kwargs)
The main entry point into the Cb Defense API.

Parameters profile (str) – (optional) Use the credentials in the named profile when connecting
to the Carbon Black server. Uses the profile named ‘default’ when not specified.

Usage:

>>> from cbapi import CbDefenseAPI
>>> cb = CbDefenseAPI(profile="production")

create(cls, data=None)
Creates a new object.

Parameters cls (class) – The Model class (only some models can be created, for example,
Feed, Notification, . . .)

Returns An empty instance of the Model class

Raises ApiError – if the Model cannot be created

get_notifications()
Retrieve queued notifications (alerts) from the Cb Defense server. Note that this can only be used with a
‘SIEM’ key generated in the Cb Defense console.

Returns list of dictionary objects representing the notifications, or an empty list if none avail-
able.

5.3. Cb Defense API 67

cbapi Documentation, Release 1.3.6

notification_listener(interval=60)
Generator to continually poll the Cb Defense server for notifications (alerts). Note that this can only be
used with a ‘SIEM’ key generated in the Cb Defense console.

select(cls, unique_id=None, *args, **kwargs)
Prepares a query against the Carbon Black data store.

Parameters

• cls (class) – The Model class (for example, Computer, Process, Binary, FileInstance)
to query

• unique_id – (optional) The unique id of the object to retrieve, to retrieve a single object
by ID

Returns An instance of the Model class if a unique_id is provided, otherwise a Query object

5.3.2 Queries

class cbapi.defense.rest_api.Query(doc_class, cb, query=None)
Represents a prepared query to the Cb Defense server.

This object is returned as part of a CbDefenseAPI.select() operation on models requested from the Cb
Defense server. You should not have to create this class yourself.

The query is not executed on the server until it’s accessed, either as an iterator (where it will generate values on
demand as they’re requested) or as a list (where it will retrieve the entire result set and save to a list). You can
also call the Python built-in len() on this object to retrieve the total number of items matching the query.

Examples:

>>> from cbapi.defense import CbDefenseAPI
>>> cb = CbDefenseAPI()

Notes:

• The slicing operator only supports start and end parameters, but not step. [1:-1] is legal, but
[1:2:-1] is not.

• You can chain where clauses together to create AND queries; only objects that match all where
clauses will be returned.

and_(q)
Add a filter to this query. Equivalent to calling where() on this object.

Parameters q (str) – Query string

Returns Query object

Return type Query

where(q)
Add a filter to this query.

Parameters q (str) – Query string

Returns Query object

Return type Query

68 Chapter 5. API Documentation

cbapi Documentation, Release 1.3.6

5.3.3 Models

class cbapi.defense.models.DefenseMutableModel(cb, model_unique_id=None, ini-
tial_data=None, force_init=False,
full_doc=False)

Represents a DefenseMutableModel object in the Carbon Black server.

class cbapi.defense.models.Device(cb, model_unique_id, initial_data=None)
Represents a Device object in the Carbon Black server.

activationCode = None

activationCodeExpiryTime

assignedToId = None

assignedToName = None

avEngine = None

avLastScanTime

avMaster = None

avStatus = []

avUpdateServers = []

createTime

deregisteredTime

deviceGuid = None

deviceId = None

deviceOwnerId = None

deviceSessionId = None

deviceType = None

email = None

firstName = None

firstVirusActivityTime

info_key = 'deviceInfo'

lastContact

lastExternalIpAddress = None

lastInternalIpAddress = None

lastLocation = None

lastName = None

lastReportedTime

lastResetTime

lastShutdownTime

lastVirusActivityTime

linuxKernelVersion = None

5.3. Cb Defense API 69

cbapi Documentation, Release 1.3.6

lr_session()
Retrieve a Live Response session object for this Device.

Returns Live Response session object

Return type cbapi.defense.cblr.LiveResponseSession

Raises ApiError – if there is an error establishing a Live Response session for this Device

messages = []

middleName = None

name = None

organizationId = None

organizationName = None

osVersion = None

passiveMode = None

policyId = None

policyName = None

primary_key = 'deviceId'

quarantined = None

registeredTime

rootedByAnalytics = None

rootedByAnalyticsTime

rootedBySensor = None

rootedBySensorTime

scanLastActionTime

scanLastCompleteTime

scanStatus = None

sensorStates = []

sensorVersion = None

status = None

targetPriorityType = None

testId = None

uninstalledTime

urlobject = '/integrationServices/v3/device'

vdiBaseDevice = None

windowsPlatform = None

class cbapi.defense.models.Event(cb, model_unique_id, initial_data=None)
Represents a Event object in the Carbon Black server.

info_key = 'eventInfo'

primary_key = 'eventId'

70 Chapter 5. API Documentation

cbapi Documentation, Release 1.3.6

urlobject = '/integrationServices/v3/event'

class cbapi.defense.models.Policy(cb, model_unique_id=None, initial_data=None,
force_init=False, full_doc=False)

Represents a Policy object in the Carbon Black server.

add_rule(new_rule)

delete_rule(rule_id)

description = None

id = None

info_key = 'policyInfo'

latestRevision = None

name = None

policy = {}

priorityLevel = None

replace_rule(rule_id, new_rule)

rules

systemPolicy = None

urlobject = '/integrationServices/v3/policy'

version = None

5.4 Exceptions

If an error occurs, the API attempts to roll the error into an appropriate Exception class.

5.4.1 Exception Classes

exception cbapi.errors.ApiError(message=None, original_exception=None)

exception cbapi.errors.CredentialError(message=None, original_exception=None)

exception cbapi.errors.ServerError(error_code, message, result=None, origi-
nal_exception=None)

A ServerError is raised when an HTTP error code is returned from the Carbon Black server.

exception cbapi.errors.ObjectNotFoundError(uri, message=None, origi-
nal_exception=None)

The requested object could not be found in the Carbon Black datastore.

exception cbapi.errors.MoreThanOneResultError(message=None, origi-
nal_exception=None)

Only one object was requested, but multiple matches were found in the Carbon Black datastore.

exception cbapi.errors.InvalidObjectError(message=None, original_exception=None)

exception cbapi.errors.TimeoutError(uri=None, error_code=None, message=None, origi-
nal_exception=None)

5.4. Exceptions 71

cbapi Documentation, Release 1.3.6

72 Chapter 5. API Documentation

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

73

cbapi Documentation, Release 1.3.6

74 Chapter 6. Indices and tables

Python Module Index

c
cbapi.defense.models, 69
cbapi.protection.models, 54

75

cbapi Documentation, Release 1.3.6

76 Python Module Index

Index

A
actions (cbapi.response.models.Feed attribute), 46
activationCode (cbapi.defense.models.Device attribute),

69
activationCodeExpiryTime

(cbapi.defense.models.Device attribute),
69

activity_stats (cbapi.response.models.Sensor attribute),
44

add_rule() (cbapi.defense.models.Policy method), 71
adminComments (cbapi.protection.models.User at-

tribute), 65
Alert (class in cbapi.response.models), 47
AlertQuery (class in cbapi.response.models), 39
all_events (cbapi.response.models.Process attribute), 39
all_events_segment (cbapi.response.models.Process at-

tribute), 39
allowAgentUpgrades (cbapi.protection.models.Policy at-

tribute), 62
analysisEnabled (cbapi.protection.models.Connector at-

tribute), 55
analysisName (cbapi.protection.models.Connector

attribute), 55
analysisResult (cbapi.protection.models.Notification at-

tribute), 60
analysisTargets (cbapi.protection.models.Connector at-

tribute), 55
and_() (cbapi.defense.rest_api.Query method), 68
and_() (cbapi.protection.rest_api.Query method), 53
and_() (cbapi.response.query.Query method), 37
anomaly (cbapi.protection.models.Notification attribute),

60
ApiError, 71
apiToken (cbapi.protection.models.User attribute), 65
appliance (cbapi.protection.models.Notification at-

tribute), 60
ApprovalRequest (class in cbapi.protection.models), 54
assignedToId (cbapi.defense.models.Device attribute), 69
assignedToName (cbapi.defense.models.Device at-

tribute), 69
atEnforcementComputers

(cbapi.protection.models.Policy attribute),
62

automatic (cbapi.protection.models.Policy attribute), 62
automatic (cbapi.protection.models.User attribute), 65
automaticApprovalsOnTransition

(cbapi.protection.models.Policy attribute),
62

automaticCount (cbapi.protection.models.UserGroup at-
tribute), 66

avEngine (cbapi.defense.models.Device attribute), 69
avLastScanTime (cbapi.defense.models.Device attribute),

69
avMaster (cbapi.defense.models.Device attribute), 69
avStatus (cbapi.defense.models.Device attribute), 69
avUpdateServers (cbapi.defense.models.Device at-

tribute), 69

B
backupCellPhone (cbapi.protection.models.User at-

tribute), 65
backupPager (cbapi.protection.models.User attribute), 65
banned (cbapi.response.models.Binary attribute), 43
BannedHash (class in cbapi.response.models), 46
binary (cbapi.response.models.BannedHash attribute), 46
binary (cbapi.response.models.Process attribute), 39
Binary (class in cbapi.response.models), 42
Binary.FrequencyData (class in cbapi.response.models),

42
Binary.SigningData (class in cbapi.response.models), 42
Binary.VersionInfo (class in cbapi.response.models), 43
Binary.VirusTotal (class in cbapi.response.models), 43

C
canAnalyze (cbapi.protection.models.Connector at-

tribute), 55
cbapi.defense.models (module), 69
cbapi.protection.models (module), 54

77

cbapi Documentation, Release 1.3.6

CbDefenseAPI (class in cbapi.defense.rest_api), 67
CbLRSessionBase (class in cbapi.live_response_api), 47
CbProtectionAPI (class in cbapi.protection.rest_api), 52
CbResponseAPI (class in cbapi.response.rest_api), 35
cellPhone (cbapi.protection.models.User attribute), 65
certificate (cbapi.protection.models.FileCatalog at-

tribute), 56
Certificate (class in cbapi.protection.models), 54
childprocs (cbapi.response.models.Process attribute), 40
children (cbapi.response.models.Process attribute), 40
clVersion (cbapi.protection.models.FileRule attribute), 58
clVersion (cbapi.protection.models.TrustedUser at-

tribute), 64
clVersionMax (cbapi.protection.models.Policy attribute),

62
cmdline (cbapi.response.models.Process attribute), 40
comments (cbapi.protection.models.User attribute), 65
comms_ip (cbapi.response.models.Process attribute), 40
computer (cbapi.protection.models.ApprovalRequest at-

tribute), 54
computer (cbapi.protection.models.FileCatalog attribute),

56
computer (cbapi.protection.models.FileInstance at-

tribute), 56
Computer (class in cbapi.protection.models), 54
connectedComputers (cbapi.protection.models.Policy at-

tribute), 62
Connector (class in cbapi.protection.models), 55
connectorId (cbapi.protection.models.Notification at-

tribute), 60
connectorVersion (cbapi.protection.models.Connector at-

tribute), 55
create() (cbapi.defense.rest_api.CbDefenseAPI method),

67
create() (cbapi.protection.rest_api.CbProtectionAPI

method), 52
create() (cbapi.response.rest_api.CbResponseAPI

method), 36
create_directory() (cbapi.live_response_api.CbLRSessionBase

method), 48
create_new_partition() (cbapi.response.rest_api.CbResponseAPI

method), 36
create_notification() (cbapi.protection.models.PendingAnalysis

method), 61
create_process() (cbapi.live_response_api.CbLRSessionBase

method), 51
create_registry_key() (cbapi.live_response_api.CbLRSessionBase

method), 50
createdBy (cbapi.protection.models.FileRule attribute),

58
createdBy (cbapi.protection.models.TrustedUser at-

tribute), 64
createdBy (cbapi.protection.models.UserGroup attribute),

66

createdByUser (cbapi.protection.models.FileRule at-
tribute), 58

createdByUserId (cbapi.protection.models.FileRule at-
tribute), 58

createdByUserId (cbapi.protection.models.Policy at-
tribute), 62

createdByUserId (cbapi.protection.models.TrustedUser
attribute), 64

createdByUserId (cbapi.protection.models.UserGroup at-
tribute), 66

createTime (cbapi.defense.models.Device attribute), 69
CredentialError, 71
crossprocs (cbapi.response.models.Process attribute), 40
customLogo (cbapi.protection.models.Policy attribute),

62

D
dateCreated (cbapi.protection.models.FileRule attribute),

58
dateCreated (cbapi.protection.models.Policy attribute), 62
dateCreated (cbapi.protection.models.TrustedUser

attribute), 64
dateCreated (cbapi.protection.models.UserGroup at-

tribute), 66
dateModified (cbapi.protection.models.FileRule at-

tribute), 58
dateModified (cbapi.protection.models.Policy attribute),

62
dateModified (cbapi.protection.models.TrustedUser at-

tribute), 64
dateModified (cbapi.protection.models.UserGroup

attribute), 67
DefenseMutableModel (class in cbapi.defense.models),

69
delete_file() (cbapi.live_response_api.CbLRSessionBase

method), 47
delete_registry_key() (cbapi.live_response_api.CbLRSessionBase

method), 50
delete_registry_value() (cbapi.live_response_api.CbLRSessionBase

method), 49
delete_rule() (cbapi.defense.models.Policy method), 71
department (cbapi.protection.models.User attribute), 65
depth (cbapi.response.models.Process attribute), 40
deregisteredTime (cbapi.defense.models.Device at-

tribute), 69
description (cbapi.defense.models.Policy attribute), 71
description (cbapi.protection.models.FileRule attribute),

58
description (cbapi.protection.models.Policy attribute), 62
description (cbapi.protection.models.TrustedUser at-

tribute), 64
description (cbapi.protection.models.UserGroup at-

tribute), 67
destIp (cbapi.protection.models.Notification attribute), 60

78 Index

cbapi Documentation, Release 1.3.6

destUsername (cbapi.protection.models.Notification at-
tribute), 60

Device (class in cbapi.defense.models), 69
deviceGuid (cbapi.defense.models.Device attribute), 69
deviceId (cbapi.defense.models.Device attribute), 69
deviceOwnerId (cbapi.defense.models.Device attribute),

69
deviceSessionId (cbapi.defense.models.Device attribute),

69
deviceType (cbapi.defense.models.Device attribute), 69
digsig_issuer (cbapi.response.models.Binary attribute),

43
digsig_prog_name (cbapi.response.models.Binary at-

tribute), 43
digsig_publisher (cbapi.response.models.Binary at-

tribute), 43
digsig_sign_time (cbapi.response.models.Binary at-

tribute), 43
digsig_subject (cbapi.response.models.Binary attribute),

43
directories (cbapi.protection.models.Notification at-

tribute), 60
disconnectedEnforcementLevel

(cbapi.protection.models.Policy attribute),
62

dns_name (cbapi.response.models.Sensor attribute), 45
DriftReport (class in cbapi.protection.models), 55
DriftReportContents (class in cbapi.protection.models),

55

E
editable (cbapi.protection.models.UserGroup attribute),

67
email (cbapi.defense.models.Device attribute), 69
eMailAddress (cbapi.protection.models.User attribute),

65
enabled (cbapi.protection.models.Connector attribute), 55
enabled (cbapi.protection.models.User attribute), 65
enabled (cbapi.protection.models.UserGroup attribute),

67
end (cbapi.response.models.Process attribute), 40
endpoints (cbapi.response.models.Binary attribute), 43
enforcementLevel (cbapi.protection.models.Policy

attribute), 62
EnforcementLevel (class in cbapi.protection.models), 55
Event (class in cbapi.defense.models), 70
Event (class in cbapi.protection.models), 56
external (cbapi.protection.models.User attribute), 65
externalId (cbapi.protection.models.Notification at-

tribute), 60
externalUrl (cbapi.protection.models.Notification at-

tribute), 60

F
facets (cbapi.response.models.Watchlist attribute), 47
facets() (cbapi.response.query.Query method), 37
Feed (class in cbapi.response.models), 46
file (cbapi.protection.models.FileUpload attribute), 59
file (cbapi.protection.models.PendingAnalysis attribute),

61
file (cbapi.response.models.Binary attribute), 43
FileAnalysis (class in cbapi.protection.models), 56
fileAnalysisId (cbapi.protection.models.Notification at-

tribute), 60
fileCatalog (cbapi.protection.models.ApprovalRequest at-

tribute), 54
fileCatalog (cbapi.protection.models.Event attribute), 56
fileCatalog (cbapi.protection.models.FileInstance at-

tribute), 56
fileCatalog (cbapi.protection.models.FileRule attribute),

58
fileCatalog (cbapi.protection.models.PendingAnalysis at-

tribute), 61
FileCatalog (class in cbapi.protection.models), 56
fileCatalogId (cbapi.protection.models.FileRule at-

tribute), 58
fileHash (cbapi.protection.models.FileCatalog attribute),

56
fileHash (cbapi.protection.models.PendingAnalysis at-

tribute), 61
FileInstance (class in cbapi.protection.models), 56
FileInstanceDeleted (class in cbapi.protection.models),

56
FileInstanceGroup (class in cbapi.protection.models), 56
fileInstances (cbapi.protection.models.Computer at-

tribute), 54
filemods (cbapi.response.models.Process attribute), 40
fileName (cbapi.protection.models.FileRule attribute), 58
fileName (cbapi.protection.models.Notification attribute),

60
FileRule (class in cbapi.protection.models), 56
fileRuleType (cbapi.protection.models.FileRule at-

tribute), 58
files (cbapi.protection.models.Notification attribute), 60
fileState (cbapi.protection.models.FileRule attribute), 58
fileTrackingEnabled (cbapi.protection.models.Policy at-

tribute), 62
FileUpload (class in cbapi.protection.models), 59
find_file_writes() (cbapi.response.models.Process

method), 40
firstName (cbapi.defense.models.Device attribute), 69
firstName (cbapi.protection.models.User attribute), 65
firstSeenComputer (cbapi.protection.models.Certificate

attribute), 54
firstVirusActivityTime (cbapi.defense.models.Device at-

tribute), 69
flags (cbapi.protection.models.Notification attribute), 60

Index 79

cbapi Documentation, Release 1.3.6

flush_events() (cbapi.response.models.Sensor method),
45

forceInstaller (cbapi.protection.models.FileRule at-
tribute), 58

forceNotInstaller (cbapi.protection.models.FileRule at-
tribute), 58

frequency (cbapi.response.models.Binary attribute), 44
from_ui() (cbapi.response.rest_api.CbResponseAPI

method), 36

G
get_file() (cbapi.live_response_api.CbLRSessionBase

method), 47
get_notifications() (cbapi.defense.rest_api.CbDefenseAPI

method), 67
get_registry_value() (cbapi.live_response_api.CbLRSessionBase

method), 49
GrantedUserPolicyPermission (class in

cbapi.protection.models), 59
group (cbapi.response.models.Sensor attribute), 45
group_by() (cbapi.response.models.ProcessQuery

method), 38

H
hash (cbapi.protection.models.FileRule attribute), 58
helpDeskUrl (cbapi.protection.models.Policy attribute),

62
hidden (cbapi.protection.models.Policy attribute), 62
homePhone (cbapi.protection.models.User attribute), 65
hostname (cbapi.response.models.Sensor attribute), 45
httpHeader (cbapi.protection.models.Notification at-

tribute), 60

I
icon (cbapi.response.models.Binary attribute), 44
id (cbapi.defense.models.Policy attribute), 71
id (cbapi.protection.models.Connector attribute), 55
id (cbapi.protection.models.FileRule attribute), 58
id (cbapi.protection.models.Policy attribute), 62
id (cbapi.protection.models.TrustedUser attribute), 64
id (cbapi.protection.models.User attribute), 65
id (cbapi.protection.models.UserGroup attribute), 67
idUnique (cbapi.protection.models.FileRule attribute), 58
imageUrl (cbapi.protection.models.Policy attribute), 62
info() (cbapi.response.rest_api.CbResponseAPI method),

36
info_key (cbapi.defense.models.Device attribute), 69
info_key (cbapi.defense.models.Event attribute), 70
info_key (cbapi.defense.models.Policy attribute), 71
installerFileCatalog (cbapi.protection.models.ApprovalRequest

attribute), 54
interface_ip (cbapi.response.models.Process attribute), 40
InternalEvent (class in cbapi.protection.models), 59
InvalidObjectError, 71

ipaddr (cbapi.response.models.Sensor.NetworkAdapter
attribute), 44

is_64bit (cbapi.response.models.Binary attribute), 44
is_executable_image (cbapi.response.models.Binary at-

tribute), 44
isInternal (cbapi.protection.models.Connector attribute),

55
isolate() (cbapi.response.models.Sensor method), 45

K
kill_process() (cbapi.live_response_api.CbLRSessionBase

method), 51

L
last_server_update (cbapi.response.models.Process at-

tribute), 40
last_update (cbapi.response.models.Process attribute), 40
lastContact (cbapi.defense.models.Device attribute), 69
lastExternalIpAddress (cbapi.defense.models.Device at-

tribute), 69
lastInternalIpAddress (cbapi.defense.models.Device at-

tribute), 69
lastLocation (cbapi.defense.models.Device attribute), 69
lastName (cbapi.defense.models.Device attribute), 69
lastName (cbapi.protection.models.User attribute), 65
lastReportedTime (cbapi.defense.models.Device at-

tribute), 69
lastResetTime (cbapi.defense.models.Device attribute),

69
lastShutdownTime (cbapi.defense.models.Device at-

tribute), 69
lastVirusActivityTime (cbapi.defense.models.Device at-

tribute), 69
latestRevision (cbapi.defense.models.Policy attribute), 71
lazyApproval (cbapi.protection.models.FileRule at-

tribute), 58
LevelHigh (cbapi.protection.models.EnforcementLevel

attribute), 55
LevelLow (cbapi.protection.models.EnforcementLevel

attribute), 56
LevelMedium (cbapi.protection.models.EnforcementLevel

attribute), 56
LevelNone (cbapi.protection.models.EnforcementLevel

attribute), 56
license_request() (cbapi.response.rest_api.CbResponseAPI

method), 36
linuxKernelVersion (cbapi.defense.models.Device at-

tribute), 69
list_directory() (cbapi.live_response_api.CbLRSessionBase

method), 48
list_processes() (cbapi.live_response_api.CbLRSessionBase

method), 51
list_registry_keys() (cbapi.live_response_api.CbLRSessionBase

method), 50

80 Index

cbapi Documentation, Release 1.3.6

list_registry_keys_and_values()
(cbapi.live_response_api.CbLRSessionBase
method), 50

loadAgentInSafeMode (cbapi.protection.models.Policy
attribute), 62

lr_session() (cbapi.defense.models.Device method), 69
lr_session() (cbapi.response.models.Sensor method), 45

M
macaddr (cbapi.response.models.Sensor.NetworkAdapter

attribute), 44
malwareName (cbapi.protection.models.Notification at-

tribute), 60
malwareType (cbapi.protection.models.Notification at-

tribute), 60
manualCount (cbapi.protection.models.UserGroup

attribute), 67
max_last_server_update (cbapi.response.models.Process

attribute), 40
max_last_server_update()

(cbapi.response.models.ProcessQuery method),
38

max_last_update (cbapi.response.models.Process at-
tribute), 40

max_last_update() (cbapi.response.models.ProcessQuery
method), 38

md5 (cbapi.protection.models.Notification attribute), 60
messages (cbapi.defense.models.Device attribute), 70
MeteredExecution (class in cbapi.protection.models), 59
middleName (cbapi.defense.models.Device attribute), 70
min_last_server_update (cbapi.response.models.Process

attribute), 41
min_last_server_update()

(cbapi.response.models.ProcessQuery method),
39

min_last_update (cbapi.response.models.Process at-
tribute), 41

min_last_update() (cbapi.response.models.ProcessQuery
method), 39

modifiedBy (cbapi.protection.models.FileRule attribute),
58

modifiedBy (cbapi.protection.models.TrustedUser
attribute), 64

modifiedBy (cbapi.protection.models.UserGroup at-
tribute), 67

modifiedByUserId (cbapi.protection.models.FileRule at-
tribute), 58

modifiedByUserId (cbapi.protection.models.Policy at-
tribute), 62

modifiedByUserId (cbapi.protection.models.TrustedUser
attribute), 64

modifiedByUserId (cbapi.protection.models.UserGroup
attribute), 67

modloads (cbapi.response.models.Process attribute), 41

MoreThanOneResultError, 71
msgFormat (cbapi.protection.models.Notification at-

tribute), 60

N
name (cbapi.defense.models.Device attribute), 70
name (cbapi.defense.models.Policy attribute), 71
name (cbapi.protection.models.Connector attribute), 55
name (cbapi.protection.models.FileRule attribute), 58
name (cbapi.protection.models.Policy attribute), 63
name (cbapi.protection.models.TrustedUser attribute), 64
name (cbapi.protection.models.User attribute), 65
name (cbapi.protection.models.UserGroup attribute), 67
netconns (cbapi.response.models.Process attribute), 41
network_interfaces (cbapi.response.models.Sensor

attribute), 45
Notification (class in cbapi.protection.models), 59
notification_listener() (cbapi.defense.rest_api.CbDefenseAPI

method), 67
Notifier (class in cbapi.protection.models), 61

O
ObjectNotFoundError, 71
observed_filenames (cbapi.response.models.Binary at-

tribute), 44
organizationId (cbapi.defense.models.Device attribute),

70
organizationName (cbapi.defense.models.Device at-

tribute), 70
origIdUnique (cbapi.protection.models.FileRule at-

tribute), 59
os (cbapi.response.models.Sensor attribute), 45
osVersion (cbapi.defense.models.Device attribute), 70

P
packageName (cbapi.protection.models.Policy attribute),

63
pager (cbapi.protection.models.User attribute), 65
parent (cbapi.protection.models.Certificate attribute), 54
parent (cbapi.response.models.Process attribute), 41
passiveMode (cbapi.defense.models.Device attribute), 70
passwordHash (cbapi.protection.models.User attribute),

66
passwordSalt (cbapi.protection.models.User attribute), 66
pendingAnalyses (cbapi.protection.models.Connector at-

tribute), 55
PendingAnalysis (class in cbapi.protection.models), 61
permissions (cbapi.protection.models.UserGroup at-

tribute), 67
platformFlags (cbapi.protection.models.FileRule at-

tribute), 59
platformId (cbapi.protection.models.TrustedUser at-

tribute), 64

Index 81

cbapi Documentation, Release 1.3.6

PlatformLinux (cbapi.protection.models.FileRule at-
tribute), 58

PlatformMac (cbapi.protection.models.FileRule at-
tribute), 58

PlatformWindows (cbapi.protection.models.FileRule at-
tribute), 58

policy (cbapi.defense.models.Policy attribute), 71
policy (cbapi.protection.models.Computer attribute), 54
Policy (class in cbapi.defense.models), 71
Policy (class in cbapi.protection.models), 61
policyId (cbapi.defense.models.Device attribute), 70
policyIds (cbapi.protection.models.FileRule attribute), 59
policyIds (cbapi.protection.models.UserGroup attribute),

67
policyName (cbapi.defense.models.Device attribute), 70
primary_key (cbapi.defense.models.Device attribute), 70
primary_key (cbapi.defense.models.Event attribute), 70
priorityLevel (cbapi.defense.models.Policy attribute), 71
Process (class in cbapi.response.models), 39
processFileCatalog (cbapi.protection.models.ApprovalRequest

attribute), 54
ProcessQuery (class in cbapi.response.models), 38
product (cbapi.protection.models.Notification attribute),

60
publisher (cbapi.protection.models.Certificate attribute),

54
publisher (cbapi.protection.models.FileCatalog attribute),

56
Publisher (class in cbapi.protection.models), 63
PublisherCertificate (class in cbapi.protection.models), 63
put_file() (cbapi.live_response_api.CbLRSessionBase

method), 47

Q
quarantined (cbapi.defense.models.Device attribute), 70
query (cbapi.response.models.Watchlist attribute), 47
Query (class in cbapi.defense.rest_api), 68
Query (class in cbapi.protection.rest_api), 53
Query (class in cbapi.response.query), 37
queued_stats (cbapi.response.models.Sensor attribute),

45

R
readOnly (cbapi.protection.models.Policy attribute), 63
readOnly (cbapi.protection.models.User attribute), 66
refresh() (cbapi.response.models.Process method), 41
registeredTime (cbapi.defense.models.Device attribute),

70
registrationDate (cbapi.protection.models.User attribute),

66
regKeys (cbapi.protection.models.Notification attribute),

60
regmods (cbapi.response.models.Process attribute), 41
replace_rule() (cbapi.defense.models.Policy method), 71

reportOnly (cbapi.protection.models.FileRule attribute),
59

reputationApprovalsEnabled
(cbapi.protection.models.FileRule attribute), 59

reputationEnabled (cbapi.protection.models.Policy
attribute), 63

resetCLIPassword() (cbapi.protection.models.Computer
method), 54

ResolutionApproved (cbapi.protection.models.ApprovalRequest
attribute), 54

ResolutionInstaller (cbapi.protection.models.ApprovalRequest
attribute), 54

ResolutionNotResolved (cbapi.protection.models.ApprovalRequest
attribute), 54

ResolutionOther (cbapi.protection.models.ApprovalRequest
attribute), 54

ResolutionPublisher (cbapi.protection.models.ApprovalRequest
attribute), 54

ResolutionRejected (cbapi.protection.models.ApprovalRequest
attribute), 54

ResolutionRuleChange (cbapi.protection.models.ApprovalRequest
attribute), 54

ResolutionUpdater (cbapi.protection.models.ApprovalRequest
attribute), 54

resource_status (cbapi.response.models.Sensor attribute),
46

restart_sensor() (cbapi.response.models.Sensor method),
46

ResultClean (cbapi.protection.models.Notification
attribute), 60

ResultClean (cbapi.protection.models.PendingAnalysis
attribute), 61

ResultMalicious (cbapi.protection.models.Notification at-
tribute), 60

ResultMalicious (cbapi.protection.models.PendingAnalysis
attribute), 61

ResultNotAvailable (cbapi.protection.models.Notification
attribute), 60

ResultNotAvailable (cbapi.protection.models.PendingAnalysis
attribute), 61

ResultPotentialThreat (cbapi.protection.models.Notification
attribute), 60

ResultPotentialThreat (cbapi.protection.models.PendingAnalysis
attribute), 61

rootedByAnalytics (cbapi.defense.models.Device at-
tribute), 70

rootedByAnalyticsTime (cbapi.defense.models.Device
attribute), 70

rootedBySensor (cbapi.defense.models.Device attribute),
70

rootedBySensorTime (cbapi.defense.models.Device at-
tribute), 70

rules (cbapi.defense.models.Policy attribute), 71

82 Index

cbapi Documentation, Release 1.3.6

S
salutation (cbapi.protection.models.User attribute), 66
scanLastActionTime (cbapi.defense.models.Device at-

tribute), 70
scanLastCompleteTime (cbapi.defense.models.Device at-

tribute), 70
scanStatus (cbapi.defense.models.Device attribute), 70
ScriptRule (class in cbapi.protection.models), 63
search() (cbapi.response.models.Watchlist method), 47
search_binaries() (cbapi.response.models.Feed method),

46
search_processes() (cbapi.response.models.Feed

method), 46
select() (cbapi.defense.rest_api.CbDefenseAPI method),

68
select() (cbapi.protection.rest_api.CbProtectionAPI

method), 52
select() (cbapi.response.rest_api.CbResponseAPI

method), 36
sensor (cbapi.response.models.Process attribute), 41
Sensor (class in cbapi.response.models), 44
Sensor.NetworkAdapter (class in cbapi.response.models),

44
sensorStates (cbapi.defense.models.Device attribute), 70
sensorVersion (cbapi.defense.models.Device attribute),

70
ServerConfig (class in cbapi.protection.models), 63
ServerError, 71
ServerPerformance (class in cbapi.protection.models), 63
set_registry_value() (cbapi.live_response_api.CbLRSessionBase

method), 49
severity (cbapi.protection.models.Notification attribute),

60
sha1 (cbapi.protection.models.Notification attribute), 60
sha256 (cbapi.protection.models.Notification attribute),

60
sid (cbapi.response.models.Sensor attribute), 46
signed (cbapi.response.models.Binary attribute), 44
signing_data (cbapi.response.models.Binary attribute), 44
size (cbapi.response.models.Binary attribute), 44
sort() (cbapi.protection.rest_api.Query method), 53
sort() (cbapi.response.query.Query method), 38
sourceId (cbapi.protection.models.FileRule attribute), 59
sourceType (cbapi.protection.models.FileRule attribute),

59
SourceTypeApplicationTemplate

(cbapi.protection.models.FileRule attribute), 58
SourceTypeEventRule (cbapi.protection.models.FileRule

attribute), 58
SourceTypeExternal (cbapi.protection.models.FileRule

attribute), 58
SourceTypeImported (cbapi.protection.models.FileRule

attribute), 58

SourceTypeManual (cbapi.protection.models.FileRule at-
tribute), 58

SourceTypeReputation (cbapi.protection.models.FileRule
attribute), 58

SourceTypeTrustedDirectory
(cbapi.protection.models.FileRule attribute), 58

SourceTypeUnifiedManagement
(cbapi.protection.models.FileRule attribute), 58

srcHost (cbapi.protection.models.Notification attribute),
60

srcIp (cbapi.protection.models.Notification attribute), 60
srcUsername (cbapi.protection.models.Notification at-

tribute), 60
start (cbapi.response.models.Process attribute), 41
StateApproved (cbapi.protection.models.Certificate at-

tribute), 54
StateApproved (cbapi.protection.models.FileRule at-

tribute), 58
StateBanned (cbapi.protection.models.Certificate at-

tribute), 54
StateBanned (cbapi.protection.models.FileRule attribute),

58
StateMixed (cbapi.protection.models.Certificate at-

tribute), 54
StateUnapproved (cbapi.protection.models.Certificate at-

tribute), 54
StateUnapproved (cbapi.protection.models.FileRule at-

tribute), 58
status (cbapi.defense.models.Device attribute), 70
status (cbapi.protection.models.Notification attribute), 60
StatusAnalyzed (cbapi.protection.models.PendingAnalysis

attribute), 61
StatusCancelled (cbapi.protection.models.PendingAnalysis

attribute), 61
StatusClosed (cbapi.protection.models.ApprovalRequest

attribute), 54
StatusError (cbapi.protection.models.PendingAnalysis at-

tribute), 61
StatusOpen (cbapi.protection.models.ApprovalRequest

attribute), 54
StatusProcessed (cbapi.protection.models.PendingAnalysis

attribute), 61
StatusScheduled (cbapi.protection.models.PendingAnalysis

attribute), 61
StatusSubmitted (cbapi.protection.models.ApprovalRequest

attribute), 54
StatusSubmitted (cbapi.protection.models.PendingAnalysis

attribute), 61
systemPolicy (cbapi.defense.models.Policy attribute), 71

T
targetApp (cbapi.protection.models.Notification at-

tribute), 60

Index 83

cbapi Documentation, Release 1.3.6

targetOS (cbapi.protection.models.Notification attribute),
60

targetPriorityType (cbapi.defense.models.Device at-
tribute), 70

templateComputer (cbapi.protection.models.Computer
attribute), 54

testId (cbapi.defense.models.Device attribute), 70
ThreatReportQuery (class in cbapi.response.models), 39
time (cbapi.protection.models.Notification attribute), 60
TimeoutError, 71
title (cbapi.protection.models.User attribute), 66
totalComputers (cbapi.protection.models.Policy at-

tribute), 63
TrustedDirectory (class in cbapi.protection.models), 63
TrustedUser (class in cbapi.protection.models), 63
type (cbapi.protection.models.Notification attribute), 60

U
unified (cbapi.protection.models.User attribute), 66
unifiedFlag (cbapi.protection.models.FileRule attribute),

59
unifiedSource (cbapi.protection.models.FileRule at-

tribute), 59
uninstalledTime (cbapi.defense.models.Device attribute),

70
unisolate() (cbapi.response.models.Sensor method), 46
unsigned_modloads (cbapi.response.models.Process at-

tribute), 41
update_license() (cbapi.response.rest_api.CbResponseAPI

method), 37
Updater (class in cbapi.protection.models), 64
urlobject (cbapi.defense.models.Device attribute), 70
urlobject (cbapi.defense.models.Event attribute), 70
urlobject (cbapi.defense.models.Policy attribute), 71
urlobject (cbapi.protection.models.ApprovalRequest at-

tribute), 54
urlobject (cbapi.protection.models.Certificate attribute),

54
urlobject (cbapi.protection.models.Computer attribute),

54
urlobject (cbapi.protection.models.Connector attribute),

55
urlobject (cbapi.protection.models.DriftReport attribute),

55
urlobject (cbapi.protection.models.DriftReportContents

attribute), 55
urlobject (cbapi.protection.models.Event attribute), 56
urlobject (cbapi.protection.models.FileAnalysis at-

tribute), 56
urlobject (cbapi.protection.models.FileCatalog attribute),

56
urlobject (cbapi.protection.models.FileInstance attribute),

56

urlobject (cbapi.protection.models.FileInstanceDeleted
attribute), 56

urlobject (cbapi.protection.models.FileInstanceGroup at-
tribute), 56

urlobject (cbapi.protection.models.FileRule attribute), 59
urlobject (cbapi.protection.models.FileUpload attribute),

59
urlobject (cbapi.protection.models.GrantedUserPolicyPermission

attribute), 59
urlobject (cbapi.protection.models.InternalEvent at-

tribute), 59
urlobject (cbapi.protection.models.MeteredExecution at-

tribute), 59
urlobject (cbapi.protection.models.Notification attribute),

60
urlobject (cbapi.protection.models.Notifier attribute), 61
urlobject (cbapi.protection.models.PendingAnalysis at-

tribute), 61
urlobject (cbapi.protection.models.Policy attribute), 63
urlobject (cbapi.protection.models.Publisher attribute),

63
urlobject (cbapi.protection.models.PublisherCertificate

attribute), 63
urlobject (cbapi.protection.models.ScriptRule attribute),

63
urlobject (cbapi.protection.models.ServerConfig at-

tribute), 63
urlobject (cbapi.protection.models.ServerPerformance at-

tribute), 63
urlobject (cbapi.protection.models.TrustedDirectory at-

tribute), 63
urlobject (cbapi.protection.models.TrustedUser attribute),

64
urlobject (cbapi.protection.models.Updater attribute), 64
urlobject (cbapi.protection.models.User attribute), 66
urlobject (cbapi.protection.models.UserGroup attribute),

67
use_comprehensive_search()

(cbapi.response.models.ProcessQuery method),
39

User (class in cbapi.protection.models), 64
UserGroup (class in cbapi.protection.models), 66
userGroupIds (cbapi.protection.models.User attribute),

66
username (cbapi.response.models.Process attribute), 41
userSid (cbapi.protection.models.TrustedUser attribute),

64

V
vdiBaseDevice (cbapi.defense.models.Device attribute),

70
version (cbapi.defense.models.Policy attribute), 71
version (cbapi.protection.models.FileRule attribute), 59

84 Index

cbapi Documentation, Release 1.3.6

version (cbapi.protection.models.Notification attribute),
60

version_info (cbapi.response.models.Binary attribute), 44
virustotal (cbapi.response.models.Binary attribute), 44
visible (cbapi.protection.models.FileRule attribute), 59

W
walk() (cbapi.live_response_api.CbLRSessionBase

method), 48
walk_children() (cbapi.response.models.Process

method), 41
walk_parents() (cbapi.response.models.Process method),

42
Watchlist (class in cbapi.response.models), 47
webui_link (cbapi.response.models.Binary attribute), 44
webui_link (cbapi.response.models.Process attribute), 42
webui_link (cbapi.response.models.Sensor attribute), 46
where() (cbapi.defense.rest_api.Query method), 68
where() (cbapi.protection.rest_api.Query method), 53
where() (cbapi.response.query.Query method), 38
windowsPlatform (cbapi.defense.models.Device at-

tribute), 70

Index 85

	Major Features
	API Credentials
	Backwards & Forwards Compatibility
	User Guide
	Installation
	Getting Started
	Concepts
	Logging & Diagnostics
	Cb Response API Examples
	CbAPI and Live Response
	CbAPI Changelog

	API Documentation
	Cb Response API
	Cb Protection API
	Cb Defense API
	Exceptions

	Indices and tables
	Python Module Index

